原文链接:https://medium.com/@KenichiHiguchi/the-order-of-ml-model-performances-ranking-changed-after-removing-14-000-label-errors-on-imagenet-2d2f1fb8b8b6
ImageNet using AlexNet Towards Effective Low-bitwidth Convolutional Neural Networks SBD: Training Binary Weight Networks via Semi-Binary Decomposition ImageNet using ResNet-18 (W-weights, A-activation) Bi-Real net 56.4% TBN 55.6 Binary Ensemble 61.0% ImageNet with Res-18 and Res-34 Binary Ensemb...
ImageNet中的LRN层是按下述公式计算的: 但似乎,在后来的设计中,这一层已经被其...全网最全经典卷积神经网络架构汇总——深度学习之ILSVRC竞赛(ImageNet竞赛)优胜网络结构 近年来,卷积神经网络在图像分类领域取得了巨大进展,主要表现在ILSVRC竞赛中优胜冠军从经典的机器学习算法转向深度学习算法,尤其是卷积神经网络结构...
AI 模型和数据的质量很重要,但管理起来可能很麻烦,尤其是对于非结构化数据。原文链接:https://medium.com/@KenichiHiguchi/the-order-of-ml-model-performances-ranking-changed-after-removing-14-000-label-errors-on-imagenet-2d2f1fb8b8b6 原标题:《移除ImageNet标签错误,模型排名发生大变化》
虽然增加元数据的数量以正确评估 AI 模型和数据的质量很重要,但管理起来可能很麻烦,尤其是对于非结构化数据。 原文链接:https://medium.com/@KenichiHiguchi/the-order-of-ml-model-performances-ranking-changed-after-removing-14-000-label-errors-on-imagenet-2d2f1fb8b8b6 掌握「声纹识别技术」:前20小时交给...
很多人会使用 ImageNet 数据集作为 benchmark,不过基于 ImageNet 预训练的模型,最终结果可能会因为数据质量而变化。 本文中,来自 Adansons 公司的工程师 Kenichi Higuchi 对《 Are we done with ImageNet? 》一文中的 ImageNet 数据集进行重新研究,在去除错误标签数据后,重新评估 torchvision 上发布的模型。
很多人会使用 ImageNet 数据集作为 benchmark,不过基于 ImageNet 预训练的模型,最终结果可能会因为数据质量而变化。 本文中,来自 Adansons 公司的工程师 Kenichi Higuchi 对《 Are we done with ImageNet? 》一文中的 ImageNet 数据集进行重新研究,在去除错误标签数据后,重新评估 torchvision 上发布的模型。
移除ImageNet标签错误,模型排名发生大变化 选自medium 作者:Kenichi Higuchi 机器之心编译 编辑:rome rome 数据集的质量,真的很重要。 此前,ImageNet 因为存在标签错误的问题而成为热门话题,这个数字说出来你可能会大吃一惊,至少有十万个标签是存在问题的。那些基于错误标签做的研究,很可能要推翻重来一遍。