2009年,李飞飞团队在CVPR上首次对外展示了图像识别数据集ImageNet,它的出现极大推动计算机视觉算法的发展——懂CV的都是知道这里面的门道有多深。现在,随着多模态迅猛发展,团队认为“现有的视频基准测试,大多集中在特定领域或短视频上”,并且“这些数据集的平均视频长度较短,限制了对长视频理解能力的全面评估”。
ImageNet是计算机视觉领域最具影响力的图像数据集之一,由斯坦福大学教授李飞飞团队主导创建,2009年在CVPR会议上首次公开。该数据集通过标准化大规模图像识别任务,为深度学习算法的发展提供了关键支撑,直接推动了卷积神经网络(CNN)的复兴。 1. 数据集构成与分类体系 ImageNet基于WordNet语义网络构建,...
ImageNet数据库,是一个建立在WordNet结构主干上的大型图像体。ImageNet的目标是将WordNet的80000个同义词集中的大部分用平均500~1000张全分辨率图像填充,产生数千万个由WordNet的语义层次组织的带注释的图像。ImageNet目前的状态有12个子树,5247个同义词集,320万张图片。ImageNet在规模和多样性上比当前存在的图像数据...
ImageNet 有超过 1500 万张图片,仅汽车图像的数量达到了 70 万张,类别数量为 2567 个。如此巨量、 标注错误极低且免费的数据集,已经成为图像处理领域研究者首先接触的数据集之一。 毫不夸张的说,ImageNet 是图像处理算法的试金石。从 2010 年起,每年 ImageNet 官方会举办挑战赛。2017 年后的比赛由 Kaggle 社区...
随着深度学习技术的快速发展,数据驱动的方法已成为计算机视觉领域的核心。在过去的十年里,随着 ImageNet 诞生之后,计算机视觉领域见证了 “从数据中学习” 的范式的兴盛。在 ImageNet 上进行预训练,然后迁移到下游的视觉任务,都能显著提升模型性能,并且已经成为 2D 图像领域的标准化方式。
ImageNet图像分类-01-MobileNet-ONNX 基于 ImageNet 数据集,可以对 1000 个类别的物体进行分类。 MobileNet 是一种轻量化的卷积神经网络模型,旨在在计算资源有限的设备上实现高效的图像分类和目标识别。 MobileNet 通过使用深度可分离卷积来减少模型中的参数数量,从而大大减小了模型的大小和计算复杂度。深度可分离卷积...
ImageNet 是计算机视觉领域常用的数据集之一。在图像分类、目标分割和目标检测中有着无法撼动的地位。ImageNet 最初是由李飞飞等人在CVPR2009 年发表的论文——「ImageNet: A Large-Scale Hierarchical Image Database」中发布的。多年来,ImageNet 的相关论文对业内有极大的影响。截至到当前,Google Scholar 上展示该...
前面提到过ImageNet的比赛包含多个项目,如果只考虑图像识别的话,训练集只需要上图中Task1&2部分那个(大小138G)。下面是两个下载方法: 1).官网下载:https://image-net.org/ 可以点上面的链接也可以百度直接搜索。如图需要点Download,但是没有登录的话就算点了也无法进入下载页面,需要先注册登录。右上角...
4. ImageNet数据组织与使用 1. ImageNet 说明 ImageNet 由斯坦福李飞飞教授带领创建,ImageNet 本身有2万多个的类别,超过 1400 万张图片,其中超过 100 万张图片有明确类别标注和物体位置标注。 ImageNet 按照WordNet层级结构组织数据,首先介绍一下 WordNet。在 WordNet 中每一个概念(concept)都会由很多个词(word...