1. Towards Robust Image Classification Using Sequential Attention Models 论文:Towards Robust Image Classification Using Sequential Attention Models 2. Self-training with Noisy Student improves ImageNet classification 论文:Self-training with Noisy Student improves ImageNet classification 3. Image Matching across...
通过将图像视为图形数据,我们探索了如何利用GNN来提取其表示。 图表示图像的优点包括:1)图是一种广义的数据结构,网格和序列可以看作图的特例;2) 图形比网格或序列更灵活地对复杂对象进行建模,因为图像中的对象通常不是形状不规则的四边形;3) 物体可以被视为多个部分的组成(例如,人可以大致分为头部、上身、手臂和...
lightweight fpga mlp sar imageclassification gnn medicalimage saratr Updated Jul 1, 2024 Python arnabdeypolimi / Image-classification-PyTorch-MLflow Star 13 Code Issues Pull requests Image classification using Transfer learning technique. Updated and added mlflow with PyTorch fine-tune tutorial...
78 -- 4:18 App Blood Cell Image Classification using Machine Learning 1391 12 11:12:41 App 【智能体Agent】从零打造你的自媒体工作素材库!10小时博士精讲如何从0到1搭建AI Agent—RAG、DEBUG、提示工程、GPT、 28 -- 0:41 App Nonaccident Scene Samples in GTACrash 25 -- 0:31 App Roadway ...
Multigranularity Chemical Cluster Classification(MG3C) 针对一致性原则,设计了一个叫 MG3C 的pretext task。MG3C 的含义是多粒度化合物簇分类。听起来很唬人,但背后的原理很简单。 Supplementary Figures:Figure S1 首先需要介绍 MACCS Key,MACCS Key 是 fingerprint 的一种形式表达,每一个 fingerprint 都对应一个...
文献阅读记录:Graph Convolutional Networks for Hyperspectral Image Classification,程序员大本营,技术文章内容聚合第一站。
Gidaris S, Komodakis N (2019) Generating classification weights with GNN denoising autoencoders for few-shot learning. In: CVPR, pp 21–30 Goldblum M, Fowl L, Goldstein T (2020) Adversarially robust few-shot learning: a meta-learning approach. In: NeurIPS, pp 17,886–17,895 ...
neural networks (GNNs) [139] mainly address strictly graphical problems such as the classification of molecular structures. In practice, the Euclidean spaces (e.g. images) or sequences (e.g. text), and many common scenes can be converted into graphs that can be modelled by using GCN ...
Finally, the applicability and effectiveness of the model are verified by using Grad-CAM tool. The experiments show that the accuracy of classification and recognition of the model is better than the advanced model in this field. The concerned areas of model classification are similar or the same...
Jeon Y, Kim J (2017) Active convolution: learning the shape of convolution for image classification. In: IEEE Conference on computer vision and pattern recognition, pp 1846–1854 Scarselli F, Gori M, Tsoi AC, Hagenbuchner M, Monfardini G (2009) The graph neural network model. IEEE Trans ...