1If n is a positive integer,and if the units’digit of n2 is 6 and the units’digit of (n-1)2 is 9,the units’digit of (n+1)2 is . (英汉小词典 units’digit:个位数字) 2(5分)If n is a positive integer,and if the units’digit of n2 is 6 and the units’digit of (n...
If n is a positive integer , and if the units ’ digit of n2is 6 and the units ’ digit of (n−1)2is 9 , the units ’ digit of (n+1)2is ___.( 英汉小词典 units ’ digit: 个位数字 ) 相关知识点: 试题来源: 解析 个位数为 0 到 9 的数的平方的个位数为: 0−−...
If n is a positive integer,and if the units’digit of n2 is 6 and the units’digit of (n-1)2 is 9,the units’digit of (n+1)2 is ___. (英汉小词典 units’digit:个位数字) 相关知识点: 试题来源: 解析 试题分析:分别写出0到9平方的尾数对应情况,然后可得出n及n-1的尾数,进而可得出n...
If n is a positive integer,and if the units’digit of the units’digit of 9,the units’digit of . (英汉小词典 units’个位数字) 相关知识点: 试题来源: 解析 5解:个位数为0到9的数的平方的个位数为:;;;由此可知n的个位数是4或6,又的个位数为3,可得n的个位数为4,的个位数为3,的个位数为...
If n is a positive integer and the product of all the integers from 1 to n, inclusive, is divisible by 990, what is the least possible value of n? A. 8 B. 9 C. 10 D. 11 E. 12 相关知识点: 试题来源: 解析 D [解析] Arithmetic Properties of numbers For convenience, let N ...
If n is a positive integer.and if the units’digit of n2 is 6 and the units’digit of (n-1)2 is 9.the units’digit of (n+1)2 is 55. (英汉小词典 units’digit:个位数字)
百度试题 结果1 题目【题目】If n is a positive integer and n^2+3n-10n^2+6n-16 is a reduced fracnen, thenn^2+3n-10n^2+6n-16= 相关知识点: 试题来源: 解析 【解析】811 反馈 收藏
gmat数学题.if n is a positive integer and n^2 is divisible by 72,then the largest positive integer that must divide n is 答案是24, 答案 72=8*9=2*2*2*3*3若72a=2*2*2*3*3a=n^2所以n最小为2*2*3=12,a=2.相关推荐 1gmat数学题.if n is a positive integer and n^2 is divis...
If n is a positive integer,and if the units’digit of n2 is 6 and the units’digit of (n-1)2 is 9,the units’digit of (n+1)2 is ___. (英汉小词典 units’digit:个位数字)
gmat数学题Q15If n is a positive integer and r is the remainder when (n – 1)(n + 1) is divided by 24,what is the value of r?(1)5 2 is not a factor of n.(2)5 3 is not a factor of n.55A.Statement (1) ALONE is sufficient,but statement (2) alone is not sufficient.B...