If f(x) is an invertible function and g(x)=2f(x)+5, then the value of g−1(x)is 2f−1(x)−5 (b) 12f−1(x)+5 12f−1(x)+5 (d) f−1(x−52) View Solution If the function f(x)=x3+ex2andg(x)=f−1(x), then the value of g'(1) is View Solution ...
1.If a function has an inverse function,then the inverse function is one-to-one.2.If a function is diffrentiable,the f'(x) is one-to-one.需要理由和举例. 答案 第一个是对的!存在反函数的条件是原函数必须是一一对应的,也就是说原函数有反函数,则反函数一定是一一对应的!第二个是错的!可微...
If the function f(x) = x³ has an inverse function g(x), then g(8)=? A. 2 B. 3 C. 4 D. 5 相关知识点: 试题来源: 解析 A。因为 f(x) = x³,其反函数 g(x) = ∛x。当 f(x)=8 时,x = 2,所以 g(8)=2。反馈 收藏 ...
If the inverse function ofy=f(x)isx=g(y)andf'(x)=11+x2, then prove that,g'(x)=1+[g(x)]2. View Solution If g is the inverse of f and f'(x) =11+x2, then g'(x) is equal to View Solution Doubtnut is No.1 Study App and Learning App with Instant Video Solutions for...
A. 7/3 B. 2 C. 3 D. 1 相关知识点: 试题来源: 解析 A。已知 f(x) = 3x - 2,求 f(x)的反函数 g(x),先令 y = 3x - 2,解得 x = (y + 2)/3,所以 g(x) = (x + 2)/3。当 x = 5 时,g(5) = (5 + 2)/3 = 7/3。反馈 收藏 ...
Suppose f−1 is the inverse function of the differentiable function f and let G(x)=1f−1(x). If f(3)=2, and f′(3)=19, find G′(2). Derivatives; Inverse Function Theorem: We'll first notice that G(x) is differentiable at 2 and...
Answer to: Determine whether the statement is true or false. Justify your answer. If f is an even function, then y = f(x) + c is also even for any...
if an enterprise is t if another if answer if any of the rules a if anybody comes if at first you do no if both ends if conj if destruction must o if detected if dont love you if early detection if eliminated or refo if ever i if ever youre in my a if georgia fails if google...
1.if f(x)=x ln(x^2),then f ' (x)=?2.if f(x)=ln[x+4+e^(-3x)],then f ' (0) is?3.if f(x)=[e^(2x)]/2x,then f ' (x)=?4.if f=Arc tan(cosx),then dy/dx=?5.if g(x)=3^√(x-1) and f(x) is the inverse function of g(x),then f ' (x)=?6.let...
If both results are the original variable (in your case n), then the functions are inverse. For your functions to be inverses, you need to have the results F(h(n)) = n and h(F(n)) = n. F(h(n)) F(-4n + 4) 1 - 1/4(-4n + 4) 1 - (-n + 1) 1 + n - 1 n ...