trainer = Trainer(model=model,args=training_args,train_dataset=lm_datasets["train"],eval_dataset=lm_datasets["validation"], ) trainer.train() 训练完成后,评估以如下方式进行: importmath eval_results = trainer.evaluate()print(f"Perplexity:{math.exp(eval_results['eval_loss']):.2f}") 监督微调...
pipe_outputs = reward_model(texts) rewards = [torch.tensor(output[1]["score"]) for output in pipe_outputs] ### Run PPO step stats = ppo_trainer.step(query_tensors, response_tensors, rewards) ppo_trainer.log_stats(stats, batch, rewards) ### Save model ppo_trainer.save_model("my_pp...
from transformers import Trainer, TrainingArguments training_args = TrainingArguments( output_dir=vocab_path, overwrite_output_dir=True, num_train_epochs=1, per_gpu_train_batch_size=32, save_steps=10_000, save_total_limit=2, ) trainer = Trainer( model=model, args=training_args, data_collator...
本篇文章将分享如何通过 Docker 来在本地快速运行 Hugging Face 上的有趣模型。用比原项目更少的代码...
trainer.train() trainer.save_model("./my_model") 奖励模式训练 RLHF训练策略用于确保LLM与人类偏好保持一致并产生更好的输出。所以奖励模型被训练为输出(提示、响应)对的分数。这可以建模为一个简单的分类任务。奖励模型使用由人类注释专家标记的偏好数据作为输入。下面是训练奖励模型的代码。
model=model, args=training_args, train_dataset=lm_datasets["train"], eval_dataset=lm_datasets["validation"], ) trainer.train() 训练完成后,评估以如下方式进行: import math eval_results = trainer.evaluate() print(f"Perplexity: {math.exp(eval_results['eval_loss']):.2f}")监督微调 ...
model: model可以是一个集成了 transformers.PreTrainedMode 或者torch.nn.module的模型,官方提到trainer对 transformers.PreTrainedModel进行了优化,建议使用。transformers.PreTrainedModel,用于可以通过自己继承这个父类来实现huggingface的model自定义,自定义的过程和torch非常相似,这部分放到huggingface的自定义里讲。
别的领域不清楚,但是在nlp领域训练任务,还是HF的Trainer更加好用,没用过Pytorch Lightning,不对pytorch...
In 1 code., I have uploaded hugging face 'transformers.trainer.Trainer' based model using save_pretrained() function In 2nd code, I want to download this uploaded model and use it to make predictions. I need help in this step - How to download the uploaded model & then make a pr...
另外返回loss的方法是为了利用HuggingFace里的Trainer对模型进行训练的。 注册自定义类 AutoConfig.register("your_model_name", YOUR_CONFIG_CLASS) AutoModel.register(YOUR_CONFIG_CLASS, YOUR_MODEL_CLASS) 有了这样的注册,你就可以用AutoConfig和AutoModel的save_pretrained和from_pretrained方法了。