「EleutherAI」团队已经开发了一个开源模型——GPT-J-6B,所以,我们可以从Hugging Face模型库中,直接获取他们的模型。from transformers import AutoModelForCausalLM, AutoTokenizermodel = AutoModelForCausalLM.from_pretrained("EleuterAI/gpt-j-6B")tokenizer = AutoTokenizer.from_pretrained("EleuterAI/gpt-j-6...
model_id: "meta-llama/Meta-Llama-3-70b" # Hugging Face model id dataset_path: "." # path to dataset max_seq_len: 3072 # 2048 # max sequence length for model and packing of the dataset # training parameters output_dir: "./llama-3-70b-hf-no-robot" # Temporary output directory for...
「EleutherAI」团队已经开发了一个开源模型——GPT-J-6B,所以,我们可以从Hugging Face模型库中,直接获取他们的模型。 from transformers import AutoModelForCausalLM, AutoTokenizer model = AutoModelForCausalLM.from_pretrained("EleuterAI/gpt-j-6B")tokenizer = AutoTokenizer.from_pretrained("EleuterAI/gpt-j-...
model_id: "meta-llama/Meta-Llama-3-70b" # Hugging Face model id dataset_path: "." # path to dataset max_seq_len: 3072 # 2048 # max sequence length for model and packing of the dataset # training parameters output_dir: "./llama-3-70b-hf-no-robot" # Temporary output directory for...
「EleutherAI」团队已经开发了一个开源模型——GPT-J-6B,所以,我们可以从Hugging Face模型库中,直接获取他们的模型。 from transformers import AutoModelForCausalLM, AutoTokenizer model = AutoModelForCausalLM.from_pretrained("EleuterAI/gpt-j-6B")tokenizer = AutoTokenizer.from_pretrained("EleuterAI/gpt-j-...
model_id: "meta-llama/Meta-Llama-3-70b" # Hugging Face model id dataset_path: "." # path to dataset max_seq_len: 3072 # 2048 # max sequence length for model and packing of the dataset # training parameters output_dir: "./llama-3-70b-hf-no-robot" # Temporary output directory for...
第一步是安装 Hugging Face Libraries 以及 Pyroch,包括 trl、transformers 和 datasets 等库。trl 是建立在 transformers 和 datasets 基础上的一个新库,能让对开源大语言模型进行微调、RLHF 和对齐变得更容易。 # Install Pytorch for FSDP and FA/SDPA ...
「EleutherAI」团队已经开发了一个开源模型——GPT-J-6B,所以,我们可以从Hugging Face模型库中,直接获取他们的模型。 复制 from transformersimportAutoModelForCausalLM,AutoTokenizer model=AutoModelForCausalLM.from_pretrained("EleuterAI/gpt-j-6B")tokenizer=AutoTokenizer.from_pretrained("EleuterAI/gpt-j-6B")...
第一步是安装 Hugging Face Libraries 以及 Pyroch,包括 trl、transformers 和 datasets 等库。trl 是建立在 transformers 和 datasets 基础上的一个新库,能让对开源大语言模型进行微调、RLHF 和对齐变得更容易。 复制 # Install Pytorch for FSDP and FA/SDPA ...
「EleutherAI」团队已经开发了一个开源模型——GPT-J-6B,所以,我们可以从Hugging Face模型库中,直接获取他们的模型。 代码语言:javascript 复制 代码语言:javascript 复制 from transformersimportAutoModelForCausalLM,AutoTokenizer model=AutoModelForCausalLM.from_pretrained("EleuterAI/gpt-j-6B")tokenizer=AutoTokeniz...