SUBDIR=foo svn export https://github.com/google-research/google-research/trunk/$SUBDIR If you'd like to submit a pull request, you'll need to clone the repository; we recommend making a shallow clone (without
使用Bert-BiLstm-CRF做中文命名实体识别,使用的数据集来自https://aistudio.baidu.com/aistudio/competition/detail/802/0/datasets - Trenx-J/BertForNER
使用Bert-BiLstm-CRF做中文命名实体识别,使用的数据集来自https://aistudio.baidu.com/aistudio/competition/detail/802/0/datasets bert-base-chinese权重以及参数文件 文件夹与main文件同级 有关参数 batch_size=32 (每次训练的batch大小,根据个人的显存大小修改) ...
Currently, only the standard BERT transformer encoder is available under this repository. Environment requirements CUDA: 11.6 CMake: >= 3.13 PyTorch: >= 1.8 GPU compute capability: 7.0(V100) / 7.5(T4) or 8.0(A100) Python: >= 3.7 Tested on: A100 + CUDA 11.6 + PyTorch 1.13.0+cu116 + ...
.github config docs lib openapi pkg/appimage src tests tools .codespellrc .dockerignore .gitattributes .gitignore .rusty-hook.toml Cargo.lock Cargo.toml Dockerfile LICENSE README.md clippy.toml rustfmt.toml shell.nix README Code of conduct ...
Google released models like FLAN-T5 and BERT. And there is a huge open source research community releasing models like BLOOM and StableLM. Progress is now moving so swiftly that every few weeks the state-of-the-art is changing or models that previously required clusters to run now run on ...
+ +或者可以使用更小参数量的[Leaf](https://github.com/google-research/leaf-audio) 。 + +使用: +- am_data.yml + ``` + mel_layer_type: Melspectrogram #Spectrogram/leaf + trainable_kernel: True #support train model,not recommend + ``` + +## Cpp Inference + +已经更新基于ONNX的CPP...
Used by eslint, webpack, yarn, pm2, pnpm, RedwoodJS, FactorJS, salesforce, Cypress, Google Lighthouse, Generate, tencent cloudbase, lint-staged, gluegun, hygen, hardhat, AWS Amplify, GitHub Actions Toolkit, @airbnb/nimbus, and more! Please follow Enquirer's author: https://github.com/...
ALBERT(来自 Google Research and the Toyota Technological Institute at Chicago) 伴随论文 ELECTRA Funnel Transformer 发布。作者为 Sid Black, Stella Biderman, Leo Gao, Phil Wang and Connor Leahy 发布。 (来自 Facebook) 伴随论文HuBERT: Self-Supervised Speech Representation Learning by Masked Prediction of...
https://arxiv.org/abs/2312.10807. Contribute to hk-zh/language-conditioned-robot-manipulation-models development by creating an account on GitHub.