代码链接:github.com/HRNet/HRForm 本文提出了一种高分辨率Transformer(HRT),它可以通过学习高分辨率表征来完成密集的预测任务,而原来的Vision Transformer学习的则是低分辨率表征,同时具有很高的内存和计算成本。作者在高分辨率卷积网络(HRNet)中分别引入的多分辨率并行设计,以及local-window self-attention,在小的非重叠图...
为了减少特征粒度的损失和模拟多尺度变化,提出了一种包含丰富空间信息的高分辨率变换器(HRformer),并构造了稠密预测的多分辨率表示方法。 为了减少特征粒度的损失并对多尺度变化进行建模,中科院计算所、北京大学、微软亚洲研究院、百度联合提出了一个包含更丰富空间信息的高分辨率Transformer(HRFormer),能够为dense predictio...
HRFormer采用HRNet中的多分辨率并行设计。首先HRFormer在stem和第一阶段都采用卷积,因为研究结果已经证明了卷积在图像处理的前期表现得更好。并且HRFormer在整个处理过程中保持高分辨率流,并行处理中、低分辨率流有助于提高高分辨率表示。利用不同分辨率的特征图,HRFormer模型能够模拟图像的多尺度变化。同时HRFormer通过与...
为了减少特征粒度的损失和模拟多尺度变化,提出了一种包含丰富空间信息的高分辨率变换器(HRformer),并构造了稠密预测的多分辨率表示方法。 为了减少特征粒度的损失并对多尺度变化进行建模,中科院计算所、北京大学、微软亚洲研究院、百度联合提出了一个包含更丰富空间信息的高分辨率Transformer(HRFormer),能够为dense predictio...
并且ViT只能输出单尺度(single-scale)特征表示,缺少了通过数据增强捕获多尺度变换的能力。为了减少特征粒度的损失和模拟多尺度变化,提出了一种包含丰富空间信息的高分辨率变换器(HRformer),并构造了稠密预测的多分辨率表示方法。 为了减少特征粒度的损失并对多尺度变化进行建模,中科院计算所、北京大学、微软亚洲研究院、百...
本文分享NeurIPS 2021论文『HRFormer: High-Resolution Transformer for Dense Prediction』,HRNet又出续作啦!由国科大&北大&MSRA联合提出高分辨率Transformer《HRFormer》,代码已开源! 详细信息如下: 导言: 在本文中,作者提出了一种高分辨率 Transformer(High-Resolution Transformer ,HRT),用于学习密集预测任务的高分辨率表...
我们提供了一种高分辨率Transformer (HRFormer),它可以为密集的预测任务学习高分辨率表示,而原始的Vision Transformer产生低分辨率表示,并具有较高的内存和计算成本。我们利用了高分辨率卷积网络(HRNet)中引入的多分辨率并行设计,以及本地窗口自注意(该自注意对小的非重叠图像窗口进行自我注意),以提高内存和计算效率。此外...
项目链接:https://github.com/HRNet/HRFormer 导言: 在本文中,作者提出了一种高分辨率 Transformer(High-Resolution Transformer ,HRT),用于学习密集预测任务的高分辨率表示,而原始的视觉Transformer 只能处理低分辨率表示,并且具有较高的显存...
HRFormer: High-Resolution Vision Transformer for Dense Predict Yuhui Yuan, Rao Fu, Lang Huang, Weihong Lin, Chao Zhang, Xilin Chen, Jingdong Wang NeurIPS 2021|December 2021 We present a High-Resolution Transformer (HRFormer) that learns high-resolution representations for dense predi...
同时HRFormer通过与多尺度融合模块交换多分辨率特征信息,能够混合使用短距离和长距离注意力。在每一个分辨率下,HRFormer使用采用局部窗口的自注意力机制来降低内存消耗和计算复杂度。 研究人员还将表示映射划分为一组非重叠的小图像窗口,并在每个图像窗口中分别进行自注意力,这个操作将内存和复杂度从二次降低到到线性。