First you play the role of li yang fang and then the role of Susan you partner Mike has and Kim sun you are at the airport to meet you visitor you know each other so great you visit first talk with him and then take him to the hotel. Pledged to meet you representative someone answe...
解析 D 1到1000中有多少个整数不含数字1?注意,这和查找最多三个数字的数字中有多少不包含1是一样的.由于总共有10个可能的数字,而且其中只有一个是不允许的(1),所以每个数字都有9个数字的选择,这样的数字总数为9*9*9=729,然而,我们多数了一个;0不在1到1000之间,所以由\text{D}728个数....
1000除30约等于33---1到1000里有33个能被30整除的数字。30和16的最小公约数是240. 1000/240约等于4---1到1000里有4个能被240整除的数字。33-4=29个能被30整除却不能被16整除的数字。
解析 51. D解:将范围扩大为0~999。把0~999这1000个数都看成三位数(位数不够的用0补足)。不含有数字1的共有 9*9*9=729 (个)。注意:在扩大范围时,把0和1这两个数包含进来了,1对答案没有影响,但0却对答案产生了影响。所以符合要求的整数共有:729-1=728(个)。
在1000到9999之间,有多少整数具有四个不同的数字?( )A. 3024 B. 4536 C. 5040 D. 6480 E. 6561 相关知识点: 试题来源: 解析 解:9×9×8×7=4536(种);故选B。 分步:千位只能是1~9的其中一个,共9种情况;百位只剩9个数字可选,共有9种情况;十位只有8种情况;个位只有7种情况;根据乘法原理:9...
解析 B 翻译:1000至9999中有多少个位数字互不相同的四位数? 组数问题:千位数字有1∼9共9种选法,百、十、个位分别有9、8、7种选法,一共有9×9×8×7=4536(个)数字互不相同的四位数.结果一 题目 How many integers between 1000 and 9999 have four distinct digits?( ).A.3024B.4536C.5040D.6480...
1-1000中能整除30却不能整除16的有多少个,1000中能够整除30的有30,60,90,120,150,180,210,240,270,300,330,360,390,420,450,480,510,540,570,600,630,660,690,720,750,780,810,840,870,900,930,960,990共33个,其中不能整除16的有240,480,720,960共4个,用33-4=29!
重点短语1.多少how many2.大量;许多a lot of3.在讲桌上4.在教室的墙上(OD)/(OB)(theteacher^(-t)sin(5k)/(1000cm) 5.在教室的前面at the front of the classroom6.一张世界地图amap of the world7.一张英国地图a(mapefEng)andon the left of8.在……的左边9.饭厅;饭堂dining hall10.科学实验...
How many teams will qualify for 2024 Bathurst 1000? A total of twenty seven teams will perform in the Repco Bathurst 1000 2022. How can I watch Australia’s ‘Great Race’ from the stadium? Collect your tickets from online and enjoy The Great Race. ...
There are 992 numbers among the first 1000 positive integers that can be expressed in the form [2x] + [4x] + [8x] + [16x]. **Understanding the Problem** We need to find how many numbers from 1 to 1000 can be represented by the expression [2x] + [4x] + [8x] + [16x], where...