特征提取方法(一):HOG原理及OpenCV实现 方向梯度直方图(Histogram of Oriented Gradient, HOG)于2005年提出,是一种常用的特征提取方法,HOG+SVM在行人检测中有着优异的效果。 HOG基本思想:在一幅图像中,梯度或边缘的方向密度分布能够很好地描述局部目标区域的特征,HOG正是利用这种思想,对梯度信息做出统计,并生成最后的...
与其他描述子相比,HOG得到的描述子保持了几何和光学转化不变性除非物体方向改变。而Block与Cells关系如下图所示: 而现在,我们给出作者做的行人检测试验,如下图6所示: 其中,图中(a)表示所有训练图像集的平均梯度;(b)和©分别表示:图像中每一个区间上的最大最大正、负SVM权值;(d)表示一副测试图像;(e)计算...
在一幅图像中,方向梯度直方图(Histogram of Oriented Gradient, HOG)能够很好地描述局部目标区域的特征,是一种常用的特征提取方法,HOG+SVM在行人检测中有着优异的效果。在HOG中,对一幅图像进行了如下划分: 图像(image)->检测窗口(win)->图像块(block)->细胞单元(cells) 流程图如下: 2.计算图像梯度 对数字图像...
SVM试图找到一个超平面,使得两类样本之间的间隔最大化。对于线性可分的情况,SVM寻找一个决策边界w⊤x+b=0,其中w是法向量,b是偏置项。 整个算法流程图如下图所示:
块标准化:将相邻的单元格组合成块(block),并对每个块内的直方图进行归一化。 4.3 SVM SVM试图找到一个超平面,使得两类样本之间的间隔最大化。对于线性可分的情况,SVM寻找一个决策边界w⊤x+b=0,其中w是法向量,b是偏置项。 整个算法流程图如下图所示:...
HOG+SVM工作流程: HOG+SVM工作流程图 2. HOG特征原理 2.1 图像预处理 预处理包括灰度化和Gamma变换。灰度处理是可选操作,方便计算梯度图。Gamma矫正是为了调节图像对比度,减少光照对图像的影响。 代码: import cv2 import numpy as np from matplotlib import pyplot as plt ...
作者采用SVM作为分类器,将事先标定好的行人和非行人图像按照如上步骤获取hog特征,用svm获取两类的最优间隔。当有一幅待检测图像时,获取步骤5内检测窗口的hog特征,然后利用最优间隔做出分类的判别。 如果给如上步骤画一个流程图,基本就是: OpenCV里有实现hog行人检测的代码,效果大体如下图(自己的图找不到了,...
方向梯度直方图(Histogram of Oriented Gradient, HOG)于2005年提出,是一种常用的特征提取方法,且HOG+SVM的方式在行人检测中有着优异的效果。经典的论文为《Histograms of oriented gradients for human detection》,这篇文章中,HOG就是用来做行人检测的。作者研究了行人检测的特征集问题,局部归一化的HOG描述子相比于...
块标准化:将相邻的单元格组合成块(block),并对每个块内的直方图进行归一化。 4.3 SVM SVM试图找到一个超平面,使得两类样本之间的间隔最大化。对于线性可分的情况,SVM寻找一个决策边界w⊤x+b=0,其中w是法向量,b是偏置项。 整个算法流程图如下图所示:...
作者采用SVM作为分类器,将事先标定好的行人和非行人图像按照如上步骤获取hog特征,用svm获取两类的最优间隔。当有一幅待检测图像时,获取步骤5内检测窗口的hog特征,然后利用最优间隔做出分类的判别。 如果给如上步骤画一个流程图,基本就是: OpenCV里有实现hog行人检测的代码,效果大体如下图(自己的图找不到了,...