在将NodeManager的总内存平均分配给每个Executor,最后再将单个Executor的内存按照大约10:1的比例分配到spark.executor.memory和spark.executor.memoryOverhead。 根据上述思路,可得到如下关系: (spark.executor.memory+spark.executor.memoryOverhead)= yarn.nodemanager.resource.memory-mb * (spark.executor.cores/yarn.node...
Reduce端:将输出的小文件,合并成大文件。 --开启合并Hive on Spark任务输出的小文件 set hive.merge.sparkfiles=true;
因此,Hive on Spark选择了类似于Distributed Cache的方式来实现Map Join,而且为小表生成Hash Table的任务可以分布式的执行,进一步减轻客户端的压力。不同于MapReduce,对于Hive on Spark而言,LocalWork只是为了提供一些优化时的必要信息,并不会真正被执行。对于小表的扫描以独立的SparkTask分布式地执行,为此,我们也...
1.1 Hive on spark 动机 下面是Hive在Spark上运行的主要动机:Spark用户的好处:对于已经在使用Spark进行其他数据处理和机器学习需求的用户来说,这个特性非常有价值。在一个执行后端进行标准化对于操作管理来说是很方便的,并且可以更容易地开发专门技术来调试问题和进行改进。 更广泛地采用Hive:遵循前面的观点,这将Hive作...
spark.driver.memory 10G spark.yarn.driver.memoryOverhead 2G 三、分组聚合调优 优化思路为map-side聚合。所谓map-side聚合,就是在map端维护一个hash table,利用其完成分区内的、部分的聚合,然后将部分聚合的结果,发送至reduce端,完成最终的聚合。map-side聚合能有效减少shuffle的数据量,提高分组聚合运算的效率。
一、基础配置 我们公司yarn node节点的可用资源配置为:单台node节点可用资源数:核数33cores、内存110G。Hive on Spark任务的基础配置,主要配置...
HiveonSpark是指使用Spark替代传统MapReduce作为Hive的执行引擎,在HIVE-7292提出。Hive on Spark的效率比on MR要高不少,但是也需要合理调整参数才能最大化性能,本文简单列举一些调优项。为了符合实际情况,Spark也采用on YARN部署方式来说明。 Driver参数 spark.driver.cores ...
spark.driver.memory 当运行hive on spark的时候,每个spark driver能申请的最大jvm 堆内存。该参数结合 spark.driver.memoryOverhead共同决定着driver的内存大小。 driver的内存大小并不直接影响性能,但是也不要job的运行受限于driver的内存. 这里给出spark driver内存申请的方案,假设yarn.nodemanager.resource.memory-mb...
Hive on Spark是指使用Spark替代传统MapReduce作为Hive的执行引擎,在HIVE-7292提出。Hive on Spark的效率比on MR要高不少,但是也需要合理调整参数才能最大化性能,本文简单列举一些调优项。为了符合实际情况,Spark也采用on YARN部署方式来说明。 Executor参数 ...
了解完了Spark作业运行的基本原理之后,对资源相关的参数就容易理解了。所谓的Spark资源参数调优,其实主要就是对Spark运行过程中各个使用资源的地方,通过调节各种参数,来优化资源使用的效率,从而提升Spark作业的执行性能。以下参数就是Spark中主要的资源参数,每个参数都对应着作业运行原理中的某个部分。