Ranking Loss是神经网络任务中的常用函数,尤其在度量学习领域,如Siamese Nets和Triplet Nets。尽管其名称多样,如Contrastive Loss、Margin Loss、Hinge Loss和Triplet Loss,本质上都是为了预测输入样本间的相对距离。度量学习的目标是通过相似度分数,即预测样本间的距离,来理解和组织数据。在应用Ranking Lo...
ranking loss在很多不同的领域,任务和神经网络结构(比如siamese net或者Triplet net)中被广泛地应用。其广泛应用但缺乏对其命名标准化导致了其拥有很多其他别名,比如对比损失Contrastive loss,边缘损失Margin loss,铰链损失hinge loss和我们常见的三元组损失Triplet loss等。 本文翻译自https://gombru.github.io/2019/04/...
基本上,我们利用社交网络上的数据训练出来的文本图片检索自监督模型中,Triplet Ranking Loss 的结果要比 Cross-Entropy Loss 好很多。 使用Triplet Ranking Loss 而不是 Cross-Entropy Loss 或 Mean Square Error Loss 来预测文本的 embeddings 的另一个好处,是我们可以把预训练的文本embeddings固定住,然后把它们作为模...
深度学习中的Triplet Loss是在这两篇文章中提出的Learning Fine-grained Image Similarity with Deep Ranking和FaceNet: A Unified Embedding for Face Recognition and Clustering. 这个github链接包含了一些用交叉熵、Pairwise Ranking Loss 和 Triplet Ranking Loss训练出来的有意思的效果图。 Ranking Losses的其他名字 R...
ranking loss在很多不同的领域,任务和神经网络结构(比如siamese net或者Triplet net)中被广泛地应用。其广泛应用但缺乏对其命名标准化导致了其拥有很多其他别名,比如对比损失Contrastive loss,边缘损失Margin loss,铰链损失hinge loss和我们常见的三元组损失Triplet loss等。