Although high-entropy materials are excellent candidates for a range of functional materials, their formation traditionally requires high-temperature synthetic procedures of over 1,000 °C and complex processing techniques such as hot rolling1,2,3,4,5. One route to address the extreme synthetic re...
High-entropy materials (HEMs) hold promise for a variety of applications because their properties can be readily tailored by selecting specific elements and altering stoichiometry. In this Perspective, we highlight the emerging potential of HEMs in energy and electronic applications. We place particular...
high-entropy(La_(0.2)Nd_(0.2)Sm_(0.2)Eu_(0.2)Gd_(0.2))_(2)Ce_(2)O_(7) is designed and synthesized in this work.The as-prepared multicomponent material is formed in a simple disordered fluorite structure due to the high-entropy stabilization effect.Notably,it exhibits a much higher ...
Covers crystal structures, microstructures, structural and functional properties, applications and all their inter-relationships. Opens up the materials design methodologies for multi-component and high-entropy materials. Offers insights into the modelling and theories of the interactions and structures from ...
High-entropy alloys (HEAs) are alloys with five or more principal elements. Due to the distinct design concept, these alloys often exhibit unusual properties. Thus, there has been significant interest in these materials, leading to an emerging yet exciting new field. This paper briefly reviews so...
Revised Hume-Rothery size-difference factors are used to rationalize the formation of high-entropy solid solutions in these metal diborides. Greater than 92% of the theoretical densities have been generally achieved with largely uniform compositions from nanoscale to microscale. Aberration-corrected ...
This book provides a systematic and comprehensive description of high-entropy alloys (HEAs). The authors summarize key properties of HEAs from the perspective of both fundamental understanding and applications, which are supported by in-depth analyses. The book also contains computational modeling in ta...
While most papers on high-entropy alloys (HEAs) focus on the microstructure and mechanical properties for structural materials applications, there has been growing interest in developing high-entropy functional materials. The objective of this paper is to provide a brief, timely review on select funct...
Here we report a new class of FeCoNi(AlSi)x(0 ≤ x ≤ 0.8 in molar ratio) SMMs based on high-entropy alloys (HEAs). It is found that with the compositional and structural changes, the optimal balance of magnetic, electrical, and mechanical properties is achieved at x = 0.2, for which...
High-entropy alloys (HEAs) with an atomic arrangement of a hexagonal close-packed (hcp) structure were found in YGdTbDyLu and GdTbDyTmLu alloys as a nearly single hcp phase. The equi-atomic alloy design for HEAs assisted by binary phase diagrams started with selecting constituent elements with...