self._cached_graph = None self._cached_coalesced_graph = {} def forward(self, g, h): semantic_embeddings = [] if self._cached_graph is None or self._cached_graph is not g: self._cached_graph = g self._cached_coalesced_graph.clear() for meta_path in self.meta_paths: self._cach...
这里介绍的Heterogeneous Graph Attention Network(HAN)[3]便是经典的异构图模型,它的思想是不同类型的边应该有不同的权值,而在同一个类型的边中,不同的邻居节点又应该有不同的权值,因此它使用了节点级别的注意力(node level attention)和语义级别的注意力(semantic level attention)。其中语义级别的attention用于学习...
异质图注意力网络(Heterogeneous Graph Attention Network,HAN) 0 摘要(Abstract) GNN是一种基于深度学习的强大的图表示学习算法,它有着优越的性能。然而,GNN并没有对异质图(具有不同类型的节点和边)这一数据结构作充分的考虑。 异质图的丰富的语义信
首先利用自注意力学习重要性 ,表示的是节点j对于节点i来说有多重要,论文里叫做the importance of meta-path based node pair (i,j),计算公式为: 其中 是用来实现节点级别注意力的DNN,对相同的元路径,这个 是一样的;但是 和 是不一样的,保留了异质图的不对称性; 接下来计算节点的权重 ,基于softmax函数实现...
本文探讨了异质图注意力网络(Heterogeneous Graph Attention Network, HAN)这一模型,它在图神经网络领域中将注意力机制从同质图拓展到了包含节点和边不同类型的异质图。HAN旨在构建一种层次注意力机制,它同时考虑节点级和语义级注意力,以在异质图网络中聚合特征生成节点嵌入。在异质图中,节点和边都存在...
这部分介绍了GNN、Attention mechanism、HIN等。由于HIN的复杂性,传统的GNN并不能直接应用于HIN中。这就需要新的方法来解决这个问题,论文提出了HAN模型(Heterogeneous graph Attention Network)。 RELATED WORK Graph Neural Network GNN作为深度学习领域的扩展,用来处理无规则图结构数据。GCN可以分为两类,分别...
异构图神经网络(Heterogeneous Graph Neural Network,HAN)是一种专门设计用于处理异构图数据的模型,这种模型在2019年发表于WWW大会上。HAN的独特之处在于,它结合了注意力机制与图结构的概念,旨在更有效地处理具有不同节点类型和边类型的复杂图数据。以下是对HAN原理与实现的概述,涵盖预备知识、元路径的...
Dynamic Heterogeneous Graph Neural Network for Real-time Event Prediction 本文是滴滴发在KDD2020的paper。 文中指出用户响应预测的困难在于模型需要考虑真实物理环境中的历史信息和实时事件信息。 本文提出了使用动态构建的异构图来编码事件的属性和事件发生的周围环境。除此之外,文中提出了一种多层图神经网络模型来学...
异质图注意力网络(HeterogeneousGraphAttentionNetwork)
本文介绍的论文是《Heterogeneous Graph Attention Network》。 该篇当中作者提出了一个新的基于注意力的异构图神经网络,包括节点级注意力和语义级注意力,通过学习节点级和语义级的注意力可以充分考虑节点和元路径的重要性,并且该模型可以通过分层的方式聚合基于元路径的邻居节点的特征来生成节点嵌入。