由TMDS_Bit_clock_Ratio、TMDS_clk和色彩深度,就可以确定出tmds_clk,cdr_clk,vid_clk和ls_clk之间的关系。 1、Tmds_clk时钟频率的确定: 原理:通过一个100M的时钟与被测时钟在一定时间内的计数,可以得到被测时钟的频率。 tmds_clk时钟既与色彩深度有关,也与数据速率有关。 tmds时钟速率(tmds clock rate)时钟...
HDMI可以接收到的有三个通道的TMDS Data,TMDS Clock,可以设置Hotplug,还有DCC传输用的I2C引脚。上面已经讲了TMDS Data,与设置Hotplug,接下来分析TMDS Clock。 TMDS Clock 就是Pixel Clock,即一个像素点所用的时钟频率。TMDS Clock通过clk 引脚传输到接收端,但是接收端并不清楚发送端发过来的TMDS Clock 频率为多少,...
HDMI可以接收到的有三个通道的TMDS Data,TMDS Clock,可以设置Hotplug,还有DCC传输用的I2C引脚。上面已经讲了TMDS Data,与设置Hotplug,接下来分析TMDS Clock。 TMDS Clock 就是Pixel Clock,即一个像素点所用的时钟频率。TMDS Clock通过clk 引脚传输到接收端,但是接收端并不清楚发送端发过来的TMDS Clock 频率为多少,...
HDMI电路中的时钟频率,在最初制定时范围从25MHz-165MHz之间,也就是说一个TMDS通道每秒最多能传输165MHz×10bit=1.65Gbit的数据,3个TMDS通道一秒就可以传输1.65×3=4.95Gbit的数据,再加上控制数据,用标准方法表示就是4.96Gbps的带宽。而如果用像素点来表示,那就是一秒可以传输显示1.65G个像素点(一个完整的像素...
TMDS Clock通过clk 引脚传输到接收端,但是接收端并不清楚发送端发过来的TMDS Clock 频率为多少,因此需要通过Phy(PHY是模拟数字转换部分,不同于ADC,PHY是不知道采样频率的,需要自己锁频、锁相,侦测确切的输入频率)来进行锁相得到。但是由于HDMI频宽太宽(480P@60Hz为25.2MHz,1080P@60Hz为162MHz,甚至还有高达340MHz的...
HDMI可以接收到的有三个通道的TMDS Data,TMDS Clock,可以设置Hotplug,还有DCC传输用的I2C引脚。上面已经讲了TMDS Data,与设置Hotplug,接下来分析TMDS Clock。 TMDS Clock 就是Pixel Clock,即一个像素点所用的时钟频率。TMDS Clock通过clk 引脚传输到接收端,但是接收端并不清楚发送端发过来的TMDS Clock 频率为多少,...
TMDS Clock通过clk 引脚传输到接收端,但是接收端并不清楚发送端发过来的TMDS Clock 频率为多少,因此需要通过Phy(PHY是模拟数字转换部分,不同于ADC,PHY是不知道采样频率的,需要自己锁频、锁相,侦测确切的输入频率)来进行锁相得到。但是由于HDMI频宽太宽(480P@60Hz为25.2MHz,1080P@60Hz为162MHz,甚至还有高达340MHz的...
如下表所示,以1080i50为例时钟频率计算方式为:2640*1125*25=74.25Mhz,实际测量的频率如下图所示: 5、时钟信号差分对测量图形 如下(CLK+参考CLK-的波形图),幅值在0.4V左右: 6、TMDS差分对信号频率为时钟频率的10倍值 为742.5Mhz,为10bit,即一个时钟周期传送10bit的数据,图略。
产生两种时钟信号:一种用于链路层数据打包和读取等,而tmds_clk是高速串行时钟。用于提供给物理接口。 图2.1 HDMI设计结构 03 验证架构 这部分用UVM来实现的,利用了UVM的基本架构。大致如图3.1。 1)img_seq,img_drv 产生图像并通过axi发送给DUT,同时将数据发送给img_monitor用于产生对比数据。
HDMI可以接收到的有三个通道的TMDS Data,TMDS Clock,可以设置Hotplug,还有DCC传输用的I2C引脚。上面已经讲了TMDS Data,与设置Hotplug,接下来分析TMDS Clock。 TMDS Clock 就是Pixel Clock,即一个像素点所用的时钟频率。TMDS Clock通过clk 引脚传输到接收端,但是接收端并不清楚发送端发过来的TMDS Clock 频率为多少,...