We show that the Hawking--Penrose singularity theorem, and the generalisation of this theorem due to Galloway and Senovilla, continue to hold for Lorentzian metrics that are of $C^{1, 1}$-regularity. We formulat
Steinbauer, The Hawking-Penrose singularity theorem for C1,1-Lorentzian metrics, Commun. Math. Phys. 360 (2018) 1009-42.Graf, M., Grant, J.D.E., Kunzinger, M., Steinbauer, R.: The Hawking-Penrose singularity theorem for C1,1-Lorentzian metrics. Comm. Math. Phys 360(3), 1009-1042 ...
Steinbauer, The Hawking-Penrose singularity theorem for C1,1-Lorentzian metrics, Commun. Math. Phys. 360 (2018) 1009-42.Graf, M., Grant, J.D.E., Kunzinger, M., Steinbauer, R.: The Hawking-Penrose singularity theorem for C1,1-Lorentzian metrics. Comm. Math. Phys 360(3), 1009-1042 ...
Steinbauer, The Hawking-Penrose singularity theorem for C1,1-Lorentzian metrics, Commun. Math. Phys. 360 (2018) 1009-42.Graf, M., Grant, J.D.E., Kunzinger, M., Steinbauer, R.: The Hawking-Penrose singularity theorem for C1,1-Lorentzian metrics. Comm. Math. Phys. 360(3), 1009-1042...