State Equation: Multiplier Equation: Optimality Equation: (12) 式所表示的乘子方程也经常被称为costate, auxiliary, adjoint, or influence equation。 记忆上式的比较方便的办法是汉密尔顿方程(Hamilton Equation): 注意还有:x(t_0)=x_0,\lambda(t_1)=0,这两个条件经常容易忘记! 通过(13)可以把u表示称x和...
2) Hamilton's equations 哈密顿方程 例句>> 3) Hamilton Equation 哈密顿方程 1. In this paper, with the application of the Delauney variables, according to the Hamilton equations, the influence on the perturbation of a satellite exerted by the gravitational force of the earth through canonical...
Hamilton’s equation专业释义 <流变学> 哈密顿方程词条提问 欢迎你对此术语进行提问>> 行业词表 石油纺织轻工业造纸采矿信息学农业冶金化学医学医药地理地质外贸建筑心理学数学机械核能汽车海事消防物理生物学电力电子金融财会证券法律管理经贸人名药名解剖学胚胎学生理学药学遗传学中医印刷商业商务大气科学天文岩土工程测绘...
Applicability of Hamilton's equations in the quantum soliton problem We test the validity of Hamilton-equation methods for determining the time evolution of trial state vectors in quantum mechanics. Given a trial state vecto... Brown, D. W,K Lindenberg,West, B. J - 《Physical Review A ...
3.3、Hamilton正则方程(Hamilton Canonical Equation) 3.3.1、推导过程 3.3.2、Hamilton正则方程的特点 3.3.3、非保守力系下的Hamilton正则方程 3.3.4、Hamilton函数与运动积分 3.3.5、用Hamilton正则方程解题步骤 3.4、Poisson括号与Poisson定理 3.4.1、Poisson括号 3.4.2、Poisson括号的性质 3.4.3、Poisson定理 3.5、...
2) Hamilton's equations 哈密顿方程 例句>> 3) Hamilton Equation 哈密顿方程 1. In this paper, with the application of the Delauney variables, according to the Hamilton equations, the influence on the perturbation of a satellite exerted by the gravitational force of the earth through canonical...
Hamilton's equationExistence theoremPeano theoremHilbert spaceWe construct a bounded function H : l2 × l2 → ℝ with continuous Fréchet derivative such that for any q0 ∈ l2 the Cauchy problem has no solutions in any neighborhood of zero in ℝ.S. A. SHKARIN...
2) higher order Hamilton's canonical equations 高阶Hamilton正则方程3) linear Hamilton equation of second order 二阶线性 Hamilton 方程4) equation of higher order 高阶方程5) Hamilton-Jacobi equations Hamilton-Jacobi方程1. The viscosity solutions of Hamilton-Jacobi equations in groups of Heisenberg...
\begin{gathered} V_{*}(s)=\max _{a} R_{s}^{a}+\gamma \sum_{s^{\prime} \in S} ...