特别说明:级联分类器中的每一强分类器都包含若干个弱分类器,而每个弱分类器都是使用前述的Adaboost算法结合Haar-like特征训练得到的。 训练过程中,级联强分类器中的每一级分类器采用AdaBoost算法训练得到,对于第一级强分类器,训练数据为全体训练样本,指定了较高的检测率而对误检率只要求不小于随机结果,所以训练过...
简介 Viola Jones检测器由三个核心步骤组成,即Haar-like特征和积分图、Adaboost分类器以及级联分类器。假设我们在目标检测时,需要这么一个子窗口,在待检测的图像中不断的滑位移动,子窗口每到一个位置,就会计算出该区域的特征,然后用我们训练好的级联分类器对该特征进行筛选,只要该特征通过了所有强分类器的筛选,则...
AdaBoost 算法是一种快速人脸检测算法,它将根据弱学习的反馈,适应性地调整假设的错误率,使在效率不降低的情况下,检测正确率得到了很大的提高。 系统在技术上的三个贡献: 1.用简单的Haar-like矩形特征作特征,可快速计算 2.基于AdaBoost的分类器设计 3.采用了Cascade(分级分类器)技术提高检测速度 人脸的特征表示...
AdaBoost 算法是一种快速人脸检测算法,它将根据弱学习的反馈,适应性地调整假设的错误率,使在效率不降低的情况下,检测正确率得到了很大的提高。 系统在技术上的三个贡献: 1.用简单的Haar-like矩形特征作特征,可快速计算 2.基于AdaBoost的分类器设计 3.采用了Cascade(分级分类器)技术提高检测速度 人脸的特征表示...
AdaBoost 算法是一种快速人脸检测算法,它将根据弱学习的反馈,适应性地调整假设的错误率,使在效率不降低的情况下,检测正确率得到了很大的提高。 系统在技术上的三个贡献: 1.用简单的Haar-like矩形特征作特征,可快速计算 2.基于AdaBoost的分类器设计 3.采用了Cascade(分级分类器)技术提高检测速度 人脸的特征表示...
今天我们将着重学习第3步:基于haar特征的adaboost级联分类器的训练。若将本步骤看做一个系统,则输入为正样本的描述文件(.vec)以及负样本的说明文件(.dat);输出为分类器配置参数文件(.xml)。 老规矩,先介绍一下这篇文章需要的工具,分别是(1)训练用的opencv_haartraining.exe,该程序封装了haar特征提取以及adaboost...
影响AdaBoost人脸检测训练算法速度很重要的两方面是特征选取和特征计算。选取的特征为矩特征为Haar特征,计算的方法为积分图。 (1)Haar特征: Haar特征分为三类:边缘特征、线性特征、中心特征和对角线特征,组合成特征模板。特征模板内有白色和黑色两种矩形,并定义该模板的特征值为白色矩形像素和减去黑色矩形像素和。在确...
Paul Viola 和Miachael Jones等利用Adaboost算法构造了人脸检测器,称为Viola-Jones检测器,取得很好的效果。之后Rainer Lienhart和Jochen Maydt用对角特征,即Haar-like特征对检测器进行扩展。OpenCV中自带的人脸检测算法即基于此检测器,称为“Haar分类器”。
Haar-like是一种非常经典的特征提取算法,尤其是它与AdaBoost组合使用时对人脸检测有着不错的效果,虽然只是在当时而言。OpenCV也对AdaBoost与Haar-like组成的级联人脸检测做了封装,所以一般提及Haar-like的时候,一般都会和AdaBoost,级联分类器,人脸检测,积分图等等一同出现。但是Haar-like本质上只是一种特征提取算法,下面...
今天我们将着重学习第3步:基于haar特征的adaboost级联分类器的训练。若将本步骤看做一个系统,则输入为正样本的描述文件(.vec)以及负样本的说明文件(.dat);输出为分类器配置参数文件(.xml)。 老规矩,先介绍一下这篇文章需要的工具,分别是(1)训练用的opencv_haartraining.exe,该程序封装了haar特征提取以及adaboost...