OpenModelica Microgrid Gym (OMG): An OpenAI Gym Environment for Microgrids pythonengineeringmachine-learningcontrolreinforcement-learningsimulationopenai-gymmodelicasmart-gridspower-systemselectrical-engineeringpower-electronicspower-supplyopenmodelicamicrogridopenai-gym-environmentsenergy-system-modeling ...
OpenAI Gym comes packed with a lot of awesome environments, ranging from environments featuring classic control tasks to ones that let you train your agents to play Atari games like Breakout, Pacman, and Seaquest. However, you may still have a task at hand that necessitates the creation of a...
OpenAI Gym comes packed with a lot of awesome environments, ranging from environments featuring classic control tasks to ones that let you train your agents to play Atari games like Breakout, Pacman, and Seaquest. However, you may still have a task at hand that necessitates the creation of a...
本文档概述了为创建新环境而设计的 OpenAI Gym 中包含的创建新环境和相关有用的包装器、实用程序和测试。 示例自定义环境 这是包含自定义环境的 Python 包的存储库结构的简单骨架。更完整的例子请参考:https://github.com/openai/gym-soccer。 Third Party Environments 第三方环境主要包括了61种: 最后提供了部分入...
https://github.com/openai/gymgithub.com/openai/gym Gym 库主要提供了一系列测试环境——environments,方便我们测试,并且它们有共享的数据接口,以便我们部署通用的算法。 1 安装 Gym 基于 Python 3.5+,安装很简单,直接 pip 就可以: >>>pipinstallgym ...
Add a description, image, and links to the openai-gym-environments topic page so that developers can more easily learn about it. Curate this topic Add this topic to your repo To associate your repository with the openai-gym-environments topic, visit your repo's landing page and select ...
OpenAI 的gym允许我们自定义强化学习的 agent. 有时候我们难免需要自定义 agent 来解决具体的问题, 因此我们可以通过gym来创建一个独特的环境 (environment). 本教程将展示如何创建一个股市环境来模拟股票交易. 首先, 让我们看看到底什么是环境. 一个环境包含要运行一个 agent 所有必须的功能, 以此允许 agent 去学习...
OpenAI gym 自定义环境注册方法 方法 写好myenv.py 放置 注册因为要自己搭一个机器人环境,要借鉴一下Fetch-PickAndPlace-v1的环境,在它的基础上改进,所以就用它来注册一个新的环境来改。方法写好myenv.py这里我直接复制粘贴一下pick_and_place.py,然后把类的名字改成MyEnv.py即可。
The Sim-Env Python library generates OpenAI-Gym-compatible reinforcement learning environments that use existing or purposely created domain models as their simulation back-ends. Its design emphasizes ease-of-use, modularity and code separation.
OpenAI Gym 官方文档: https://gym.openai.com/docs/ [2] OpenAI Wiki CartPole v0: https://github.com/openai/gym/wiki/CartPole-v0 [3] spaces: https://github.com/openai/gym/tree/master/gym/spaces [4] How to create new environments for Gym: https://github.com/openai/gym/blob/master/do...