模型求解结束后,模型的求解状态可能是OPTIMAL(即model.status=2),也可能是TIME_LIMIT(即model.status=9)。我们分情况进行讨论: 返回状态为 OPTIMAL 情形1: ObjVal= 100, ObjBound= 100, PoolObjBound= 500,Solution Pool中第10个解的目标函数值为500。说明: ObjVal是模型的目标函数值,而ObjBound是Solution ...
Status(不可调整) 解的状态 1-15 变量 LB/UB(可调整) 变量下界/上界 double Obj(可调整) 变量的线性目标系数 double VType(可调整) 变量类型 C,B,I,S,N X(不可调整) 变量值 double Start(可调整) 变量的初始值 double 约束 RHS(可调整) 线性约束右端项 double Pi(不可调整) 线性约束对应的对偶变量...
当我试图获得gurobi.optimize()后目标函数的最值(obj.X)的时候,Gurobi报错:GurobiError: Unable to retrieve attribute 'X‘ 查找原因是因为添加的相关约束使得原函数无解,所以添加判断语句 if model.status == GRB.OPTIMAL: extrem = obj.X
我希望在每次迭代时都能得到解决方案,这样我就可以看到解决方案是如何发展的。0optimizer_time:error_code:0.0 5(或其他浮点数取决于problem)objective_bound: NaNoptimization_status: 7 )Drake/pydrake (由源代码构建,最近在主分支42448c0)Ubuntu 22.04.1 LTSGurobi 9.5.1上提交) 我最初与Ubuntu 18.04和Guro...
Limits the total amount of memory (in GB, i.e., \(10^9\) bytes) available to Gurobi. If more is needed, Gurobi will terminate with a MEM_LIMIT status code. In contrast to the MemLimit parameter, the SoftMemLimit parameter leads to a graceful exit of the optimization, such that it...
(3*x+5*y,GRB.MAXIMIZE)# 添加约束model.addConstr(2*x+3*y<=12,"c1")model.addConstr(4*x+y<=11,"c2")model.addConstr(x>=0,"c3")model.addConstr(y>=0,"c4")# 求解模型model.optimize()# 输出结果ifmodel.status==GRB.OPTIMAL:print(f"Optimal Value:{model.objVal}")print(f"x ={x.X...
Before opening a Pull Request, have a look at the fullContributing pageto make sure your code complies with our guidelines. Releases18 v1.5.3Latest Jan 18, 2025 + 17 releases Contributors9
418followers http://www.gurobi.com company/gurobi-optimization @gurobi README.md Welcome to Gurobi's public GitHub projects! We hope to grow and establish a collaborative community around Gurobi by openly developing a variety of different projects and tools that make optimization more accessible and...
(x - y >= 1, "c1") # 设置求解时间限制为5秒 model.setParam('TimeLimit', 5) # 优化模型 model.optimize() # 输出结果 if model.status == GRB.OPTIMAL: print(f"Optimal solution found: x={x.x}, y={y.x}") elif model.status == GRB.TIME_LIMIT: print("Solution not found ...
(gp.quicksum(flow[h, i, j] for i, j in arcs.select('*', j)) + inflow[h, j] ==# gp.quicksum(flow[h, j, k] for j, k in arcs.select(j, '*'))# for h in commodities for j in nodes), "node")# Compute optimal solutionm.optimize()# Print solutionifm.status == GRB....