as_index=False)['value'].mean()# 使用 reset_index()result2=df.groupby('category')['value'].mean().reset_index()print("Result with as_index=False:")print(result1)print("\nResult with reset_index():")print(result
df.groupby(['Animal'],as_index=False).mean() 重新构造一个数据,拥有双层索引: arrays=[['Falcon','Falcon','Parrot','Parrot'],['Captive','Wild','Captive','Wild']]index=pd.MultiIndex.from_arrays(arrays,names=('Animal','Type'))df=pd.DataFrame({'Max Speed':[390.,350.,30.,20.]},i...
使用group by 函数时,as_index 可以设置为 true 或 false,具体取决于您是否希望分组依据的列作为输出的索引。 import pandas as pd table_r = pd.DataFrame({ 'colors': ['orange', 'red', 'orange', 'red'], 'price': [1000, 2000, 3000, 4000], 'quantity': [500, 3000, 3000, 4000], }) ...
DataFrame.groupby(by = None,axis = 0,level = None,as_index = True,sort = True,group_keys = True,squeeze = False,observe= False,** kwargs) as_index:bool,默认为True 对于聚合输出,返回以组标签作为索引的对象。仅与DataFrame输入相关。as_index = False实际上是“SQL风格”的分组输出。 importpan...
当使用groupby函数进行分组操作时,有时会出现行索引被打乱的情况。这是因为groupby默认会将分组的列作为新的行索引,而不保留原来的行索引。如果想保留原来的行索引,可以通过设置参数as_index=False来实现。 下面是一个示例代码: 代码语言:txt 复制 import pandas as pd ...
print df.groupby('books', as_index=True).sum() print print df.groupby('books', as_index=False).sum() Output: 注意两次print输出中‘book’和‘price’的位置 books price 0 bk1 12 1 bk1 12 2 bk1 12 3 bk2 15 4 bk2 15 5 bk3 17 price books bk1 36 bk2 30 bk3 17 books price ...
百度试题 题目扩展库pandas中DataFrame对象groupby()方法的参数as_index=False时用来设置分组的列中的数据不作为结果DataFrame对象的index 相关知识点: 试题来源: 解析 对 反馈 收藏
pandas groupby用法之as_index DataFrame.groupby(self,by=None,axis=0,level=None,as_index=True,sort=True,group_keys=True,squeeze=False,observed=False,**kwargs) 方便阅读 此次用例是讲解使用groupby分组计算后,得到的结果表头信息并不在一行,分组后的列字段只有一个值,并不是所有。要想实现列名都在第一行...
as_index : boolean, default True For aggregated output, return object with group labels as the index. Only relevant for DataFrame input. as_index=False is effectively “SQL-style” grouped output 翻译过来就是说as_index 的默认值为True, 对于聚合输出,返回以组标签作为索引的对象。仅与DataFrame输入...
d1 = df.groupby('books',as_index=True).sum()#as_index=True 将分组的列当作索引字段print(d1)#调用print('==='*10)print(d1.loc['b1']) d2 = df.groupby('books',as_index=False).sum()#as_index=False 分组列没有成为索引print(d2)print('==='*10)# print(d2.loc['b1'])...