在群论中,群表示论(group representation theory)是一个非常重要的理论。它包含了(局部)紧致群、李群、李代数及群概 … baike.baidu.com|基于29个网页 2. 群表示理论 ...学理论。流形上的椭圆算子整体理论是非相对性量子力学的数学对应者;与群表示理论(group representation theory)是密 … ...
GROUP REPRESENTATION THEORY, Part A (Pure and Applied Mathematics Series, Vol. 7)doi:10.1112/blms/5.3.362bWinter, D. LOxford University PressBulletin of the London Mathematical Society
東雲正樹:群论 (Group Theory) 终极速成 / 物理系零基础火箭级 notes 東雲正樹:群论 (Group Theory) 终极速成 / 群表示理论 東雲正樹:群论 (Group Theory) 终极速成 / 群表示论下的正交性与完备性 東雲正樹:群论 (Group Theory) 终极速成 / 李群 (Lie group) 的定义与常见李群 東雲正樹:群论 (Group Theory...
An algorithm is developed which solves or reduces the problem whether f is decomposable over G for every group G and every group function f in G. It is shown by examples that the most important cases considered in other papers can be solved by the algorithm too. 展开 ...
当当中国进口图书旗舰店在线销售正版《【预订】Special Functions and the Theory of Group Representations 9780821815724》。最新《【预订】Special Functions and the Theory of Group Representations 9780821815724》简介、书评、试读、价格、图片等相关信息,尽在Dang
This paper advocates a new approach in the theory of finite group representations by applying exclusively the method of commuting operators in quantum mechanics. The basic problems of group representation theory, such as the labeling of the irreducible representations, the calculation of characters, irre...
東雲正樹:群论 (Group Theory) 终极速成 / 浅谈洛伦兹群 (Lorentz group) 与洛伦兹代数 東雲正樹:群论 (Group Theory) 终极速成 / マボロシの旋量空间与哈人的 Clifford 代数17. 二重覆盖与旋量群 (spin group) 17.1. Previously on AMC's The Double Cover: ...
This paper is a survey of some of the ways in which the representation theory of the symmetric group has been used in voting theory and game theory. In particular, we use permutation representations that arise from the action of the symmetric group on tabloids to describe, for example, a ...
当当中华商务进口图书旗舰店在线销售正版《海外直订Elements of the Representation Theory of the Jacobi Group 雅可比群表示理论的元素》。最新《海外直订Elements of the Representation Theory of the Jacobi Group 雅可比群表示理论的元素》简介、书评、试读、价格、图
Representation-finite selfinjective algebras of classAn, Representation Theory II Proceedings, ICRA II, Lecture Notes in Mathematics No. 832, Ottawa, 1979, Springer-Verlag, New York/Berlin (1980) Google Scholar 32. C Riedtmann Representation finite selfinjective algebras of classDn ...