Greg has an array a = a1, a2, ..., an and m operations. Each operation looks as: li, ri, di, (1 ≤ li ≤ ri ≤ n). To apply operation i to the array means to increase all array elements with numbers li, li + 1, ..., ri by value ...
Greg and Array CodeForces - 296C - 差分 给定一个数列 a=a1,a2,...,an 以及m 次操作,q 次查询。 其中第 i 次操作如同:li,ri,di,意指区间 [li,ri] 中每个元素加上 di。 其中第 i 次查询如同:xi,yi,意指需要执行第 xi,xi+1,...yi 次操作。 现在问你,执行完所有查询后的序列 a 是怎么样...
Hi everyone, Please help me finding out the mistake I did inGreg and Array. I am usingBinary Indexed Treeto solve this problem and Implemented the idea ofthis site(main idea is given below, however, please visit the site for complete documentation of the algorithm).. My complete code isAva...
G - Greg and Array CodeForces - 296C 差分+线段树 题目大意:输入n,m,k。n个数,m个区间更新标记为1~m。n次操作,每次操作有两个数x,y表示执行第x~y个区间更新。题解:通过差分来表示某个区间更新操作执行的次数。然后用线段树来更新区间。#include<bits/stdc++.h> using ...
CodeForces Round #179 (295A) - Greg and Array 一个线段树做两次用,次...先扫描1~k...用线段树统计出每个操作执行的次数..
参考代码: #include<iostream>#include<algorithm>usingnamespacestd;typedeflonglongll;constintN=1e5+10;ll a[N],b[N];ll kk[N];structnode{intleft,right;ll max;ll lazy;}e[N*4];structop{intleft,right;ll val;}op[N];voidpush_up(intp){e[p].max=max(e[p*2].max,e[p*2+1].max);...
Codeforces 295A. Greg and Array Greg has an array a = a1, a2, ..., an and m operations. Each operation looks as: li, ri, di, (1 ≤ li ≤ ri ≤ n). To apply operation i to the array means to increase all array elements with numbers li, li +...
A. Greg and Array Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://codeforces.com/contest/295/problem/A Description Greg has an arraya = a1, a2, ..., anandmoperations. Each operation looks as:li,ri,di,(1 ≤ li ≤ ri ≤ n). To apply operationito...
Greg and Array CodeForces 296C 差分数组 题意 是说有n个数,m种操作,这m种操作就是让一段区间内的数增加或则减少,然后有k种控制,这k种控制是说让m种操作中的一段区域内的操作来实际进行,问进行完k种控制后,这n个数变成了啥。 解题思路 我开始使用了最简单的差分,就是把m种操作存到结构体数组中,然后...
CodeForces Round #179 (295A) - Greg and Array 题目链接:http://codeforces.com/problemset/problem/295/A我的做法,两次线段树1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48...