作者将GCN放到节点分类任务上,分别在Citeseer、Cora、Pubmed、NELL等数据集上进行实验,相比于传统方法提升还是很显著的,这很有可能是得益于GCN善于编码图的结构信息,能够学习到更好的节点表示。 图6 当然,其实GCN的缺点也是很显然易见的,第一,GCN需要将整个图放到内存和显存,这将非常耗内存和显存,处理不了大图;第...
针对这一痛点,本文作者在 GCN 的基础上提出了 GraphSAGE 算法(SAmple and aggreGatE)用于归纳学习节点的 Embedding 向量,其不仅将 GCN 扩展到无监督的归纳学习任务中,还泛化了 GCN 的聚合函数。 与GCN 直接学习某个节点的 Embedding 向量不同的是,GraphSAGE「是利用一组聚合函数进行学习」。这些聚合函数可以从节点的...
features,feature_dim,embed_dim,adj_lists,aggregator,num_sample=10,gcn=False,cuda=False):"""初始化:param features: 特征矩阵:param feature_dim: 特征数:param embed_dim: 嵌入维度:param adj_lists: 节点间关联关系,被存成值为集合的字典:param aggregator: 聚合器,用于生成邻居节点...
GAT就来解决问题1的,GraphSAGE就来解决这个问题2的,DeepGCN等一系列文章就来讨论问题3的。基本上,GCN提出之后,后续就是各路神仙打架了,都是针对GCN的各个不同点进行讨论改进了。 3. 带attention的图注意网络GAT attention这么流行,看完GCN就容易想到,GCN每次做卷积时,边上的权重每次融合都是固定的,那能不能灵活...
GraphSAGE算法在直推式和归纳式学习均达到最优效果。GraphSage算法原理 GCN网络每次学习都需要将整个图送入显存/内存中,资源消耗巨大。另外使用整个图结构进行学习,导致了GCN的学习的固化,图中一旦新增节点,整个图的学习都需要重新进行。这两点对于大数据集和项目实际落地来说,是巨大的阻碍。我们知道,GCN网络的每...
GCN 图神经网络基于巴拿赫不动点定理提出,但图神经网络领域的大发展是在 2013 年 Bruna 提出图上的基于频域和基于空域的卷积神经网络后。 关于图卷积神经网络的理解与介绍,知乎上的回答已经讲的非常透彻了。 如何理解 Graph Convolutional Network (GCN)?
GraphSAGE 是 2017 年提出的一种图神经网络算法,解决了 GCN 网络的局限性: GCN 训练时需要用到整个图的邻接矩阵,依赖于具体的图结构,一般只能用在直推式学习 Transductive Learning。GraphSAGE 使用多层聚合函数,每一层聚合函数会将节点及其邻居的信息聚合在一起得到下一层的特征向量,GraphSAGE 采用了节点的邻域...
GraphSAGE: GCN落地必读论文 导读:图卷积网络(Graph Convolutional Network,简称GCN)最近两年大热,取得不少进展。作为 GNN 的重要分支之一,很多同学可能对它还是一知半解。PinSAGE( PinSage: 第一个基于 GCN 的工业级推荐系统)为 GCN 落地提供了实践经验,而本文是 PinSAGE 的理论基础,同样出自斯坦福,是 GCN 非常经典...
GNN中经典的DeepWalk, GCN方法都是transductive learning,大多数节点嵌入模型都基于频谱分解/矩阵分解方法。而这些方法问题是矩阵分解方法本质上是transductive 的!简而言之,transductive 方法在处理以前从未见过的数据时效果不佳。这些方法需要整个图形结构的节点在训练时都出现,以生成节点嵌入。如果之后有新的节点添加到Gpa...
一、GCN的缺点 图卷积网络(GCN)是一种有效的图形神经网络,它能够很好地捕获图形的拓扑结构和节点特征。然而,它也存在一些缺点。首先,GCN假设图形数据的拓扑结构是固定的,而在实际应用中,图形数据的拓扑结构往往是动态变化的。此外,GCN只能处理同质的图形,不能处理多模态或异质的图形。此外,GCN对大规模图形的处理能力...