(i)我们提出了一种新颖的框架,即图转换网络(Graph Transformer Networks),用于学习新的图结构,其中包括识别有用的元路径和多跳连接,以便在图上学习有效的节点表示。(ii)图生成是可解释的,模型能够提供关于预测的有效元路径的洞察。(iii)我们证明了由图转换网络学习到的节点表示的有效性,在所有三个基准的异构图节点...
对于基于光谱图理论,Spectral Networks and Locally Connected Networks on Graphs文章提出了一种使用给定图的傅里叶基础在光谱域中执行卷积的方法。Semi-Supervised Classification with Graph Convolutional Networks这篇文章使用光谱图卷积的一阶近似简化了GNN。非光谱方法利用空间上的邻居,直接在图上定义了卷积操作。如Grap...
论文标题:Graph Transformer Networks论文作者:Seongjun Yun, Minbyul Jeong, Raehyun Kim, Jaewoo Kang, Hyunwoo J. Kim论文来源:2019, NeurIPS论文地址:download 论文代码:download 1 IntroductionGNNs 基于的理论假设:图结构固定(fixed) 同质性(homogeneous)...
本文介绍的论文是《Graph Transformer Networks》。 该篇文章作者提出了一个新型图网络GTNs,它可以实现异构图转为同构图,同时能够以端到端的方式学习新的图上的节点表示,而且以实验表明,GTNs即使没有领域知识数据和任务学习的图结构,依旧能够通过在新图上进行卷积产生强大的节点表示,而且GTNs在3个节点分类任务上都取...
Graph Neural Networks (GNNs) are effective at analyzing the complex relationships among nodes. However, traditional GNN models tend to focus only on immediate neighbors during information propagation, limiting their ability to capture global information. To address this limitation, we propose aSelf-...
说明:上面PPT的三个结构图来源于论文《A Generalization of Transformer Networks to Graphs》 (DLG-AAAI 2021) 3. 为什么会有Graph Transformer 根据前面的介绍,我们知道Graph Transformer可以集合GNN和Transformer的核心优点,这也是为什么会有G...
Graph Neural Networks (GNNs) have been widely applied to various fields due to their powerful representations of graph-structured data. Despite the success of GNNs, most existing GNNs are designed to learn node representations on the fixed and homogeneous graphs. The limitations especially become prob...
This repository is the implementation of Graph Transformer Networks(GTN). Seongjun Yun, Minbyul Jeong, Raehyun Kim, Jaewoo Kang, Hyunwoo J. Kim, Graph Transformer Networks, In Advances in Neural Information Processing Systems (NeurIPS 2019). Installation Install pytorch Install torch_geometric $ ...
本文介绍的论文是《Universal Graph Transformer Self-Attention Networks》。 该篇文章的主要贡献是将Transformer应用在GNN中用于学习图的表示,作者在此基础上提出了两种UGformer变体,实验结果表明第一个UGformer变体在归纳学习上取得了较好的准确率,而第二个变体在文本分类任务上获得较好的精度。
Graph neural networks (GNN) have gained increasing research interests as a mean to the challenging goal of robust and universal graph learning. Previous GNNs have assumed single pre-fixed graph structure and permitted only local context encoding. This paper proposes a novel Graph Transformer (GTR) ...