Use the graph of the function f, shown in Figure 1.53, to find (a) the domain of f, (b) the function values f(-1) and f(2), and (c) the range of f.∵ 相关知识点: 试题来源: 解析 a. The closed dot at (-1,1) indicates that x =-1 is in the domain of f, whereas ...
解析 C。本题考查函数图像的基本形状。y = x²是一个二次函数,其图像是一条抛物线(parabola)。选项 A,直线(straight line)是一次函数的图像。选项 B,圆(circle)不是 y = x²的图像。选项 D,椭圆(ellipse)也不是 y = x²的图像。反馈 收藏 ...
The graph of the function {eq}f {/eq} is shown in the given figure. Determine the value of {eq}f(-0.5) {/eq}. Value of a Function: Let's say we have the graph of a function {eq}\displaystyle y = f(x) {/eq}. Using the graph of the function, we ca...
Sketch the graph of the function: f: real{R}/{1} to real{R} defined by f(x) = x^2-1/x-1. Sketch the graph of the function: f: real{R} to real{R} defined by f(x) = { 1 if x =0, 0 if x not equal to 0. Sketch the graph of the fu...
Sketch the graph of the function f given by f(x) = {x/(|x|) , x !=0 a... 04:57 Examine the continuity of the function f(x)= {{:(3x-2,xlt=0),(x+1,x ... 03:06 Show that the function f(x) given by f(x)={(xsin(1/x),x!=0),(0,x=0):} ... 04:29 Sketch...
The graph of the function y = -3x + 2 passes through which quadrants? A. Ⅰ and Ⅱ B. Ⅱ and Ⅲ C. Ⅰ, Ⅱ and Ⅳ D. Ⅱ, Ⅲ and Ⅳ 相关知识点: 试题来源: 解析 D。对于一次函数 y = kx + b,当 k<0,b>0 时,图象经过第二、三、四象限。本题中 k = -3<0,b = 2>0,...
Use the graph of the function fto decide whether the value of the given quantity exists. (If an answer does not exist, enter DNE.)54321A-42246-1-2(a)f(-2)dne lim_f(x)(b) l dne(c) f(O)dne X(d)1lim_(x→0)f(x) dne(e)f(2)dne(f)lim_(x→2)f(x) dne X(g)f(4)...
Sketch the graph of the function {eq}\displaystyle f(t) = 6 \cos (t), \ \frac{-3\pi}{2} \leq t \leq \frac{3\pi}{2} {/eq}. Properties of Cosine Function: The cosine function is one of the recurrent functions in many different areas of...
Use the graph of the function f to determine if the following limits exist. {eq}\lim_{x\to\infty}f(x) =?\\ \lim_{x\to-\infty}f(x) =? {/eq} Limit of a Function from the Graph: If graph of the function is given then the li...
The graph of the function y=f(x) has a unique tangent at the point (a, 0) through which the graph passes then, lim(x->a) (ln(1+6f(x))/(3f(x))