localcosh: ピクセルの逆双曲線余弦を計算します。結果がNaNの場合、NODATA値がこのピクセルに設定されます。ラスターにNODATA値が指定されていない場合、元のピクセルが設定されます。 localsin: ピクセルの正弦を計算します。結果がNaNの場合、NODATA値がこのピクセルに設定されます。ラスターに...
InMathematics,The hyperbolic functionare similar to see theTrigonometric functionorCircular function.The hyperbolic function are defined the combination ofExponential functionexand e-x. As for example, sinh(x)=(ex-e-x)/2, cosh(x)=(ex+e-x)/2, tanh(x)=(ex-e-x)/(ex+e-x),cosech(x)=...
cosh(x)Hyperbolic cosine of x pow(b, e)e to the b log(x), ln(x)Natural logarithm log(x, b)Logarithm to base b log2(x), lb(x)Logarithm to base 2 log10(x), ld(x)Logarithm to base 10 tan(x)Tangent of x cot(x)Cotangent of x ...
InMathematics,The hyperbolic functionare similar to see theTrigonometric functionorCircular function.The hyperbolic function are defined the combination ofExponential functionexand e-x. As for example, sinh(x)=(ex-e-x)/2, cosh(x)=(ex+e-x)/2, tanh(x)=(ex-e-x)/(ex+e-x),cosech(x)=...
We read every piece of feedback, and take your input very seriously. Include my email address so I can be contacted Cancel Submit feedback Saved searches Use saved searches to filter your results more quickly Cancel Create saved search Sign in Sign up Reseting focus {...
Consider the function f(x) = sinh^2(x) - 2 cosh(x) Find the axis intercepts of the graph y = f(x). For the function f(x) depicted below, graph y = - f(x). For the function f(x) depicted below, graph y = f ( x ) + 3 . For the function f(x) depicted below, ...
localcosh: ピクセルの逆双曲線余弦を計算します。結果がNaNの場合、NODATA値がこのピクセルに設定されます。ラスターにNODATA値が指定されていない場合、元のピクセルが設定されます。(Unsigned int 16ビット、Unsigned int 32ビット、Int 16ビット、Int 32ビット、Float 32ビット、Float 64ビット...
Answer to: Starting with the graph of y = e^x , find the equation of the graph that results from a. reflecting about the line y=4. b...
Let f(x) = cosh^{-1} (ln (x - 1)). Find the x and y coordinates of all points where the tangent line is parallel to the line through the points (5, 2) and (3, 1). Obtain a graph that shows f(x), the l For the equation x^2 + xy + y^2 = 1, f...
We show that the set of observables \\\(\\\{Z\\\otimes X, (\\\cosheta) X + (\\\sinheta) Y \\\ {m all} \\\ heta \\\in [0,2\\\pi)\\\}\\\) with one ancillary qubit is universal for quantum computation. The set is simpler than a previous one in the sense that on...