在本文中,我们将图神经网络划分为五大类别,分别是:图卷积网络(Graph Convolution Networks,GCN)、 图注意力网络(Graph Attention Networks)、图自编码器( Graph Autoencoders)、图生成网络( Graph Generative Networks) 和图时空网络(Graph Spatial-temporal Networks)。 符号定义 1、图卷积网络(Graph Convolution Networ...
在本文中,我们将图神经网络划分为五大类别,分别是:图卷积网络(Graph Convolution Networks,GCN)、图注意力网络(Graph Attention Networks)、图自编码器( Graph Autoencoders)、图生成网络( Graph Generative Networks) 和图时空网络(Graph Spatial-temporal Networks)。 符号定义 1、图卷积网络(Graph Convolution Networks...
图卷积递归网络(Graph Convolutional Recurrent Network, GCRN)[71] 将LSTM网络与ChebNet [21] 结合在一起。扩散卷积递归神经网络(Diffusion Convolutional Recurrent Neural Network, DCRNN)[72] 将提出的扩散图卷积层(方程18)结合到GRU网络中。此外,DCRNN采用了编码器-解码器框架来预测未来K步的节点值。 另一项平行...
Learning Steady-States of Iterative Algorithms over Graphs:递归图神经网络代表 时空图神经网络# Spatial Temporal Graph Convolutional Networks for Skeleton-Based Action Recognition:人体动作识别 Structural-RNN: Deep Learning on Spatio-Temporal Graphs.:驾驶员行为预测 Spatio-Temporal Graph Convolutional Networks: ...
Awesome papers about machine learning (deep learning) on dynamic (temporal) graphs (networks / knowledge graphs). deep-learninggraph-neural-networksgraph-neural-networktemporal-networkdynamic-network-embeddingdynamic-graph-embeddingtemporal-graph UpdatedDec 20, 2024 ...
时间图神经网络Temporal Graph Neural Networks 如果图跟时间有关系,该如何处理呢
Spatial Temporal Graph Convolutional Networks for Skeleton-Based Action Recognition:人体动作识别 Structural-RNN: Deep Learning on Spatio-Temporal Graphs.:驾驶员行为预测 Spatio-Temporal Graph Convolutional Networks: A Deep Learning Framework for Traffic Forecasting:交通流量预测 ...
Temporal Graph Neural Networks (TGNNs) have achieved success in real-world graph-based applications. The increasing scale of dynamic graphs necessitates distributed training. However, deploying TGNNs in a distributed setting poses challenges due to the temporal dependencies in dynamic graphs, the need...
To address this issue, we propose the Graph Hawkes Network to capture the dynamics of evolving graph sequences. Extensive experiments on large-scale temporal relational databases, such as temporal knowledge graphs, demonstrate the effectiveness of our approach. 展开 ...
Accurate forecasting of solar power generation with fine temporal and spatial resolution is vital for the operation of the power grid. However, state-of-the-art approaches that combine machine learning with numerical weather predictions (NWP) have coarse resolution. In this paper, we take a graph...