A. What is Graph Learning? 一般来说,图学习是指对图进行机器学习。图学习方法将图的特征映射到嵌入空间中具有相同维数的特征向量。图学习模型或算法直接将图数据转换为图学习体系结构的输出,而不将图投影到低维空间。由于深度学习技术可以将图数据编码并表示为向量,所以大多数图学习方法都是基于或从深度学习技术推...
Graph Self-Supervised Learning: A Surveyieeexplore.ieee.org/abstract/document/9770382 PDF: https://arxiv.org/pdf/2103.00111.pdfarxiv.org/pdf/2103.00111.pdf 1. 背景与概括 图的深度学习作为一个热门领域引起了广泛的研究兴趣,但是由于当前研究大多集中在半监督或者监督学习上,存在标签依赖严重、泛...
论文标题:Data Augmentation for Deep Graph Learning: A Survey 论文作者:Kaize Ding, Zhe Xu, Hanghang Tong, Huan Liu 论文来源:2022, arXiv 论文地址:download 1 介绍 本文主要总结图数据增强,并对该领域的代表性方法做出归类分析。 DGL 存在的两个问题: ...
Self-supervised learning on graphs: Deep insights and new direction. arxiv preprint. Classification-based Approach(C-APP) C-APP 依赖伪标签进行快速的模型训练。 Multi-stage self-supervised learning for graph convolutional networks on graphs with few labeled nodes. AAAI, 2020. Deep clustering for unsu...
Graph neural networks, a powerful deep learning tool to model graph-structured data, have demonstrated remarkable performance on numerous graph learning tasks. To address the data noise and data scarcity issues in deep graph learning, the research on graph data augmentation has intensified lately. How...
With the remarkable success of representation learning for prediction problems, we have witnessed a rapid expansion of the use of machine learning and deep learning for the analysis of digital pathology and biopsy image patches. However, traditional learning over patch-wise features using convolutional ...
a r X i v : 1 9 0 6 . 0 2 9 8 9 v 1 [ c s . L G ] 7 J u n 2 0 1 9 LEARNINGREPRESENTATIONSOFGRAPHDATA: ASURVEY APREPRINT MitalKinderkhedia DepartmentofStatisticalScience UniversityCollegeLondon London,W1CE6BT mital.kinderkhedia.10@ucl.ac.uk June10,2019 ABSTRACT DeepNeural...
· Graph Contrastive Learning with Adaptive Augmentation 论文阅读笔记 · Explainability in Graph Neural Networks: A Taxonomic Survey阅读笔记 阅读排行: · 20250116 支付宝出现重大事故 有感 · 我干了两个月的大项目,开源了! · 推荐一款非常好用的在线 SSH 管理工具 · 聊一聊 操作系统蓝屏 c00001...
文章名称【Arxiv-2021】【IEEE members/fellows】 Graph Self-Supervised Learning: A Survey核心要点文章旨在对现有图神经网络的方法进行全面的总结和分类,并给出常用的数据集、评估基准、方法间的性能比较和开…
graph learning目的是根据给定节点属性重建同质图的拉普拉斯矩阵 GSL pipline 经典的GSL模型包含两个部分:GNN编码器和结构学习器 1)GNN encoder输入为一张图,然后为下游任务计算节点嵌入 2)structure learner用于建模图中边的连接关系 现有的GSL模型遵从三阶段的pipline即1)graph construction, 2) graph structure modeli...