"" super(GAT, self).__init__() self.dropout = dropout self.attentions = [GraphAttentionLayer(nfeat, nhid, dropout=dropout, alpha=alpha, concat=True) for _ in range(nheads)] for i, attention in enumerate(self.attentions): self.add_module('attention_{}'.format(i), attention) #add_...
借助于PyTorch的广播机制,可以直接让a_l与x_src逐元素相乘,再沿着最后一维求和 alpha_src=(x_src*self.att_src).sum(dim=-1)# [N, heads]alpha_dst=Noneifx_dstisNoneelse(x_dst*self.att_dst).sum(dim=-1) 至此,就完成了a_l^TWh_i与a_r^TWh_j的计算。 edge-level attention coefficients edge-...
self.attentions=nn.ModuleList()for_inrange(num_heads):self.attentions.append(GraphAttentionLayer(in_features,hidden_features,dropout=dropout))self.out_att=GraphAttentionLayer(hidden_features*num_heads,out_features,dropout=dropout)defforward(self,g,h):x=hforattninself.attentions:h=attn(g,h)x=torch...
[GraphAttentionLayer(nfeat,nhid,dropout=dropout,alpha=alpha,concat=True)for_inrange(nheads)]fori,attentioninenumerate(self.attentions):self.add_module('attention_{}'.format(i),attention)self.out_att=GraphAttentionLayer(nhid*nheads,nclass,dropout=dropout,alpha=alpha,concat=False)defforward(self,...
上面就是模型构建的pytorch模型类。可以发现: 有几个nhead,self.attentions中就会有几个GraphAttentionLayer。最后再加一个self.out_att的GraphAttentionLayer,就构成了全部的网络。 forward阶段,特征先进行随机的dropout,dropout率这么大不知道是不是图网络都是这样的,六个悬念把。
上面就是模型构建的pytorch模型类。可以发现: 有几个nhead,self.attentions中就会有几个GraphAttentionLayer。最后再加一个self.out_att的GraphAttentionLayer,就构成了全部的网络。 forward阶段,特征先进行随机的dropout,dropout率这么大不知道是不是图网络都是这样的,六个悬念把。
从data/cora/cora.cites里读入数据,构建整个大图的邻接矩阵。 cora.cites里的数据格式如图,点对形式 3.搭建GAT模型 GAT(Graph Attention Network) GAT整个模型,初始有8个注意力层 GraphAttentionLayer层代码 模型训练,输入数据转换过程,数据形状 更多精彩内容,就在简书APP ...
Graph Attention Networks (Veličkovićet al., ICLR 2018):https://arxiv.org/abs/1710.10903 GAT layert-SNE + Attention coefficients on Cora Overview Here we provide the implementation of a Graph Attention Network (GAT) layer in TensorFlow, along with a minimal execution example (on the Cora ...
每个模块由三种类型的层组成:attention guided layer,densely connected layer 和 linear combination layer。 大多数现有的剪枝策略是与定义的,它们将完整的树剪成一个子树,基于此构建了邻接矩阵。事实上,这样的策略也可以被视为 hard attention 的一种形式。这样的策略可能丢失原始依赖树中的相关信息。而我们在 ...
Graph Attention Networks (Veličković et al., ICLR 2018): https://arxiv.org/abs/1710.10903 GAT layert-SNE + Attention coefficients on Cora Overview Here we provide the implementation of a Graph Attention Network (GAT) layer in TensorFlow, along with a minimal execution example (on the Cor...