梯度下降(Gradient Descent)是一种优化算法,用于最小化一个函数,通常在机器学习和人工智能中用于找到函数的局部最小值。这个函数通常是损失函数,它衡量了模型预测值与实际值之间的差异。梯度下降的核心思想是迭代地调整参数,以减少损失函数的值。用于求解无约束优化问题的迭代算法,特别常用于机器学习中的参数估计问题。其
# initialize parametersw_init =0b_init =0# some gradient descent settingsiterations =10000tmp_alpha =1.0e-2# run gradient descentw_final, b_final, J_hist, p_hist = gradient_descent(x_train ,y_train, w_init, b_init, tmp_alpha, iterations, compute_cost, compute_gradient)print(f"(w,...
【链接】 Gradient-Descent(梯度下降法-优化函数大法)mp.weixin.qq.com/s/EXumVg7EPcl0ZeRVeUk82g 如果你喜欢我的文章,欢迎你关注微信公众号【蓝莓程序岛】 ❝ 温馨提示:公式和代码可能过长,可以按住公式左右滑动来查看的。 ❞ 1 什么是梯度下降法? 梯度下降法在机器学习中常常用来优化损失函数,是一个...
在机器学习领域,梯度下降扮演着至关重要的角色。随机梯度下降(Stochastic Gradient Descent,SGD)作为一种优化算法,在机器学习和优化领域中显得尤为重要,并被广泛运用于模型训练和参数优化的过程中。 梯度下降是一种优化算法,通过迭代沿着由梯度定义的最陡下降方向,以最小化函数。类似于图中的场景,可以将其比喻为站在山...
机器学习课程也上了一段时间了,今天就带大家从 0 开始手把手用 Python 实现第一个机器学习算法:单变量梯度下降(Gradient Descent)! 我们从一个小例子开始一步步学习这个经典的算法。 一、如何最快下山? 在学习算法之前先来看一个日常生活的例子:下山。
Conjugate Gradient Descent (1) - Python实现 算法特征:①. 将线性方程组等效为最优化问题; ②. 以共轭方向作为搜索方向. 算法推导:Part Ⅰ 算法细节现以如下线性方程组为例进行算法推导, (1)Ax=b如上式(1)解存在, 则等效如下最优化问题, (2)min12‖Ax−b‖22⇒min12xTATAx−bTAx上式(2)之...
python中gradient函数 gradient descent python 说明:以下内容为学习刘建平老师的博客所做的笔记 梯度下降(Gradient Descent)小结www.cnblogs.com 因为个人比较喜欢知乎文章的编辑方式,就在这里边记笔记边学习,喜欢这个博客的朋友,可以去刘建平老师的博客follow,老师的github链接:...
随机梯度下降(Stochastic Gradient Descent,SGD)作为一种优化算法,广泛应用于模型训练和参数优化,尤其在处理大型数据集时表现出卓越的性能。梯度下降算法的美妙之处在于其简洁与优雅的特性,通过不断迭代以最小化函数值,犹如在山巅寻找通往山脚最低点的最佳路径。SGD通过引入随机性,显著提高了效率与通用...
其中Stochastic意为随机,但并不代表(random)的随机。只是分布有一定的随机性,并不是完全的random。 Stochastic Gradient Descent用来解决的问题是,原本计算loss时假设有60K的数据,那么计算loss 使用Stochastic Gradient Descent的原因在于目前的硬件(显卡)价格仍十分昂贵 适用于深度学习的显卡价格基本上都1W起...
教程Python代码如下:(numpy版+torch版) Python代码:numpy版 import numpy as np # f = w * x 此处不加偏置 # f = 2 * x X = np.array([1,2,3,4],dtype=np.float32) Y = np.array([2,4,6,8],dtype=np.float32) # 初始化权重 ...