gradient descent基本形式:BGD,SGD,MBGD。 几种启发式优化算法:momentum,NAG,Adagrad等。 可视化与一些tricks。 ===正文开始=== Gradient descent variants(BGD,SGD,MBGD) BGD code: SGD&MBGD code: 嗯,手写公式很方便。就酱。 Q:想想看,为什么后两者都要shuffle? Challenges Q:如何设计learning rate?过大会在目...
梯度下降(Gradient Descent)是一种一阶优化技术,用于寻找局部最小值或优化损失函数(loss function)。它也被称为参数优化技术(parameter optimization technique)。 因此,新技术梯度下降出现了,它能非常快地找到最小值。 梯度下降不仅适用于线性回归(linear regression),它是一个可以应用于任何机器学习部分的算法,包括线性...
梯度下降(Gradient Descent)是一种一阶优化技术,用于寻找局部最小值或优化损失函数(loss function)。它也被称为参数优化技术(parameter optimization technique)。 因此,新技术梯度下降出现了,它能非常快地找到最小值。 梯度下降不仅适用于线性回归(linear regression),它是一个可以应用于任何机器学习部分的算...
梯度下降算法的变体 批量梯度下降法(Batch gradient descent) 特点:每次采用全部样本 优点:可以保证朝着梯度下降方向更新 缺点:缓慢,内存消耗严重,不能在线更新参数 对于凸误差面,批梯度下降可以保证收敛到全局最小值,对于非凸面,可以保证收敛到局部最小值。 随机梯度下降法(Stochastic gradient descent) 特点:每次更新...
1.2 Stochastic gradient descent 这个方法叫做随机梯度下降,简称SGD。该方法是为一个样例(样例包含训练样本 和标注 )来更新一次参数,如下式所示: 因为该更新方法是对每一个样例而言的,所以参数更新比Batch的方式快。但这种方式可能会导致参数更新波动较大,如下图所示。
SGD(随机梯度下降法Stochastic gradient descent)在低谷的时候继续下降有些困难,也就是说,在某些区域,表面曲线在一个维度上要比在另一个维度上陡得多,这在局部优化附近是很常见的。在这些场景中,SGD在峡谷的斜坡上振荡,而只在底部朝着局部最优方向缓慢前进,如图2a所示。
首先,tf.train.GradientDescentOptimizer旨在对所有步骤中的所有变量使用恒定的学习率。 TensorFlow还提供现成的自适应优化器,包括tf.train.AdagradOptimizer和tf.train.AdamOptimizer,这些可以作为随时可用的替代品。 但是,如果要通过其他普通渐变下降控制学习速率,则可以利用以下事实:tf.train.GradientDescentOptimizer构造函数...
GAN中gradient descent-ascent,收敛性(尤其wT的)无法得以保证,也暗示它需要更复杂的优化算法。 如果有strong convexity(要求了下界的梯度增量;convexity不限定梯度,可以0,可以无穷小),可以得到last iterate的optimality gap,在逐渐趋近于0【TODO: strong convexity和convexity的差距以及该差距对上述理论分析带来的影响】 学...
Optimization Method -- Gradient Descent with Momentum Gradient Descent (转) Function的值減小,通常用GradientDescent來做最佳化的方法來達成。但是用GradientDescent有其缺點,例如,很容易卡在 Local Minimum。Gradient...。GradientDescentwithMomentumMomentum的概念如下: 當一顆球從斜坡上滾到平地時,球在平地仍會持續...
简介:【深度学习系列】(二)--An overview of gradient descent optimization algorithms 一、摘要 梯度下降优化算法虽然越来越流行,但经常被用作黑盒优化器,因为很难找到对其优缺点的实际解释。本文旨在为读者提供有关不同算法行为的直观信息,使他们能够使用这些算法。在本概述过程中,我们将介绍梯度下降的不同变体,总结...