接下来就涉及到了pytorch_grad_cam库中的内容: # 在预训练数据集ImageNet-1K中第281类表示tabby cattargets=[ClassifierOutputTarget(281)]# Grad-Cam算法cam=GradCAM(model=model,target_layers=target_layers)grayscale_cam=cam(input_tensor=input_tensor,targets=targets)# 取第1张图的camgrayscale_cam=graysc...
rom pytorch_grad_camimportGradCAM grad_cam = GradCAM(model=model, target_layers=[model.layer4[-1]]) cam = grad_cam(input_tensor=img_tensor.unsqueeze(0))# 输入的Shape: B x C x H x W print(f'Cam.shape:{cam.shape}') print(f'Cam.max:{cam.max()}, Cam.min:{cam.min()}') O...
模型决策的本地化:Grad-CAM 生成类激活图,突出显示输入图像的哪些区域对模型对特定类的预测贡献最大。这种定位有助于可视化和理解模型在进行预测时关注的图像中的特定特征或区域。 Grad-CAM 在 CNN 可解释性中的作用 Grad-CAM(梯度加权类激活映射)是一种用于计算机视觉领域的技术,特别是在基于卷积神经网络 (CNN) ...
其它步骤都和CAM相同,也就是说,Grad-CAM只是提出了一种更加通用的权重获取方法。 Grad-CAM代码实现: 本文以PyTorch自带的VGG11-BN为例,分步骤讲解并用代码实现Grad-CAM的整个流程和细节。 Grad-CAM前面的几个实现步骤与CAM相同,这里照搬。 1.准备工作 首先导入需要用到的包: importmathimporttorchfromtorchimportTe...
在Pytorch中,我们可以使用钩子 (hook) 技术,在网络中注册前向钩子和反向钩子。前向钩子用于记录目标层的输出特征图,反向钩子用于记录目标层的梯度。在本篇文章中,我们将详细介绍如何在Pytorch中实现Grad-CAM。加载并查看预训练的模型 为了演示Grad-CAM的实现,我将使用来自Kaggle的胸部x射线数据集和我制作的一个预...
Grad-CAM++不仅包括gradcam技术,它增加了引导反向传播,只通过类别预测的正梯度进行反向传播。Grad-CAM++这种优化的原因是因为Grad-CAM在识别和关注多次出现的对象或具有低空间占用的对象方面存在问题。所以Grad-CAM++给予与预测类相关的梯度像素更多的重要性(正梯度),通过使用更大的因子而不是像Grad-CAM那样使用...
Grad-CAM的原理非常简单。给定一个输入图像,我们首先通过前向传播计算出网络的输出。然后,我们计算输出类别对于每个特征图的梯度。这些梯度表示了每个特征图对于最终分类结果的重要程度。接下来,我们将梯度与特征图进行加权叠加,得到一个加权特征图。最后,我们将加权特征图进行平均,得到一个热力图,用来表示网络对于输入图...
一、Grad-CAM介绍 1. CAM 2. Grad-CAM 二、解压数据集 三、框架导入、参数设置 四、训练数据处理包括归一化、数据增强 五、辅助函数定义、读取用于测试 Grad-CAM 的数据 六、定义模型并测试前向计算输出 七、模型训练、权重保存 八、模型权重读取 九、生成 Grad-CAM 激活特图 新版Notebook- BML CodeLab上线,...
grad-cam是一种用于分析深度学习模型中特定区域重要性的工具,通过计算模型在给定输入下的梯度,可以确定哪些区域对模型输出影响最大。使用grad-cam,我们可以可视化模型中哪些区域对最终输出贡献最大,从而帮助我们更好地理解模型的工作原理,并为优化模型提供依据。 1.安装grad-cam工具包:首先,您需要安装grad-cam工具包,...
grad-cam的计算,其实就是只需要两个值,一个是输出特征层,另一个是模型最后的某个类别对该特征层的梯度。这里需要使用到hook机制,将这些参数额外输出来且不改变模型结构。 grad-cam应用于CNN流程正常。而要注意的是,grad-cam应用于vit时,因为vit的输出不是图像而是向量,所以需要reshape函数将梯度和特征变成图像格式...