编辑:编辑部 【新智元导读】前几日,一条MoE的磁力链接引爆AI圈。刚刚出炉的基准测试中,8*7B的小模型直接碾压了Llama 2 70B!网友直呼这是初创公司版的超级英雄故事,要赶超GPT-4只是时间问题了。有趣的是,创始…
MoE 作为一种神经网络架构设计,可以集成进 Transformer 的结构中。 当数据流经 MoE 层时,每个输入(tokens)都会动态路由到某个专家模型进行计算,这样每个专家都可以专注于特定的任务,更好、更高效地给出结果。 上图展示了具有 MoE 层的 Transformer 编码器的演化(对于解码器的修改也类似),MoE 层取代了 Transformer ...
Dylan 和 Gerald 认为,OpenAI 之所以不公开 GPT-4 的架构,并不是出于所谓 AI Safety 的考虑,而是因为这个架构很容易被复制;被称为“天才黑客”的 George Hotz 也表达过类似观点,不过,George 认为 GPT-4 由 8 个专家模型的 MoE 构成,每个专家模型的参数量约为 1100 个。 两位作者预计,Google、Meta、Anthropic...
由于FLAN-MoE 是经过指令调优的模型,因而指令调优非常重要,该研究在 FLAN 集合数据集的基础上对 FLAN-MOE 进行微调。此外,该研究将每个 FLAN-MOE 的输入序列长度调整为 2048,输出长度调整为 512。 实验与分析 平均而言,在不增加任何额外计算的情况下,Flan-MoE 在所有模型尺度上都优于密集的同类产品 (Flan-T5)。
国产开源MoE指标炸裂:GPT-4级别能力,API价格仅百分之一 明敏 发自 凹非寺量子位 | 公众号 QbitAI 最新国产开源MoE大模型,刚刚亮相就火了。DeepSeek-V2性能达GPT-4级别,但开源、可免费商用、API价格仅为GPT-4-Turbo的百分之一。因此一经发布,立马引发不小讨论。从公布的性能指标来看,DeepSeek-V2的中文综合...
与MoE在工作时会同时激活几个专家模型不同,CoE重点在于它的推理程序会在按阶段激活不同的专家,也就是按当时工作进展来激活不同的专家。 比如恶意邮件的研判,推理程序会首先推到研判专家的分区,研判专家会得出一个结果,推理程序再把它交由语言专家分区,最后再交给最终给用户的研判分析结果。
OpenAI通过使用混合专家(Mixture of Experts,MoE)模型来控制成本。GPT-4拥有16个专家模型,每个MLP专家大约有1110亿个参数。其中,有两个专家模型被用于前向传播。OpenAI用于GPT-4的算法,其实非常简单。模型中还有约550亿个参数,被用做注意力机制的共享。每次的前向传播推理(生成一个token)中,GPT-4只需要使用...
只因首个开源MoE大模型刚刚由Mistral AI发布。MoE架构全称专家混合(Mixture-of-Experts),也就是传闻中GPT-4采用的方案,可以说这是开源大模型离GPT-4最近的一集了。没有发布会、没有宣传视频,只靠一个磁力链接,就产生如此轰动效果。具体参数还得是网速快的人下载完之后,从配置文件里截图发出来的:7B参数x8...
GPT-4 是科学和工程深度结合创新的结果,中间有无数的 tricks,对于外界,如果能了解 GPT-4 的结构就如同获得了最强模型的“炼丹秘方”。这篇内容十分详尽地给出了 GPT-4 的架构、训练和推理的基础设施、参数量、训练数据集、token 数、成本、以及 MoE 模型等参数和信息细节。
其中包括GPT-4的架构、训练和推理的基础设施、参数量、训练数据集、token数、成本、混合专家模型(Mixture of Experts,MoE)等非常具体的参数和信息。尤其是,在不同工程背后,OpenAI究竟是怎样权衡的。以及在巨型模型推理时,如何跨越其中最大的瓶颈。如此重磅的爆料,出自何许人也?文章作者,是SemiAnalysis的两位名...