GPT-4的安全流水线包括两个主要部分:一组额外的安全相关RLHF训练提示,以及基于规则的奖励模型。基于规则的奖励模型(Rule-based Reward Model,RBRM)是一组zero-shot迷你GPT-4分类器,根据预定义的规则为特定动作或事件分配奖励。在这种模型中,奖励是根据事先定义的一组规则确定的,而不是从数据中学习得到的。这些分类...
有些阴谋论指出,新的 GPT-4 质量已经下降,这可能只是因为他们让推测式解码模型(speculative decoding model)将概率较低的序列传递给预测模型,从而导致了这种误解。16、推理架构:推理运行在由 128 个 GPU 组成的集群上。在不同地点的多个数据中心存在多个这样的集群。推理过程采用 8 路张量并行(tensor parallelis...
Sharon Zhou 表示:「GPT-4 最近几周的性能下降很可能与训练和 OpenAI 推出的小型专家 GPT-4 模型有关。当用户测试它时,我们会问很多不同的问题。它不会回答得很好,但它会从我们那里收集数据,并且会改进和学习。」https://www.businessinsider.com/openai-gpt4-ai-model-got-lazier-dumber-chatgpt-2023-7 ...
GPT-4的安全流水线包括两个主要部分:一组额外的安全相关RLHF训练提示,以及基于规则的奖励模型。基于规则的奖励模型(Rule-based Reward Model,RBRM)是一组zero-shot迷你GPT-4分类器,根据预定义的规则为特定动作或事件分配奖励。在这种模型中,奖励是根据事先定义的一组规则确定的,而不是从数据中学习得到的。这些分类...
检测幻觉模型地址:https://huggingface.co/vectara/hallucination_evaluation_model 此外,LLM 越来越多地用于 RAG(Retrieval Augmented Generation,检索增强生成)管道来回答用户的查询,例如 Bing Chat 和谷歌聊天集成。在 RAG 系统中,模型被部署为搜索结果的汇总器,因此该排行榜也是衡量模型在 RAG 系统中使用时准确...
config = { "task_name": "ToxicCommentClassification", "task_type": "classification", # classification task "dataset": { "label_column": "label", }, "model": { "provider": "openai", "name": "gpt-3.5-turbo" # the model we want to use }, "prompt...
性能的变化 在benchmark基准数据集上的表现优异 在其中语言上的比较 视觉输入性能 视觉数据集上的表现 ...
有些阴谋论指出,新的 GPT-4 质量已经下降,这可能只是因为他们让推测式解码模型(speculative decoding model)将概率较低的序列传递给预测模型,从而导致了这种误解。 16、推理架构:推理运行在由 128 个 GPU 组成的集群上。在不同地点的多个数据中心存在多个这样的集群。推理过程采用 8 路张量并行(tensor parallelism)...
基于规则的奖励模型(Rule-based Reward Model,RBRM)是一组zero-shot迷你GPT-4分类器,根据预定义的规则为特定动作或事件分配奖励。在这种模型中,奖励是根据事先定义的一组规则确定的,而不是从数据中学习得到的。这些分类器在RLHF微调期间为GPT-4策略模型提供额外的奖励信号,以正确的输出行为为目标进行训练,例如拒绝...
MoE还包含门控模型(Gating Model),用于解释每个专家做出的预测,并根据输入选择信任哪个专家。 最后,MoE需要一种聚合机制(Pooling Method),根据门控模型和专家的输出进行预测。 在现实的应用中,研究人员提出一种称为「稀疏门控专家混合层」的方法,作为原始MoE的迭代,这个方法提供了一个通用的神经网络组件,可以适应不同...