GPT-2 的核心思想是: 语言模型即多任务学习器:GPT-2 提出了零样本学习(Zero-Shot Learning)和少样本学习(Few-Shot Learning)的能力,训练好的模型可以直接通过提示(Prompt)完成下游任务,而无需显式微调。 更大规模的数据和模型:GPT-2 使用了更大且质量更高的数据集和更多的模型参数,以提升模型的泛化能力和生成...
2019 年,OpenAI 在 GPT-1 的基础上发布了 GPT-2,利用无监督预训练模型做有监督任务。相较于初代模型进行诸多改进,GPT-2 参数达到 15 亿,可以执行多样性任务,开始学习在不需要明确监督的情况下执行数量惊人的任务。在 GPT-2 阶段, OpenAI 去掉了 GPT-1 阶段的有监督微调(fine-tuning),成为无监督模型。
GPT-2的最大贡献是验证了通过海量数据和大量参数训练出来的词向量模型有迁移到其它类别任务中而不需要额外的训练。但是很多实验也表明,GPT-2的无监督学习的能力还有很大的提升空间,甚至在有些任务上的表现不比随机的好。尽管在有些zero-shot的任务上的表现不错,但是我们仍不清楚GPT-2的这种策略究竟能做成什么样子。
GPT2在原有架构上优化了无监督预训练过程,使其具备了在预训练阶段同时学习多项语言理解任务的能力。尽管在预训练和微调阶段仍然使用了交叉熵损失,但相比GPT1,GPT2能够更加灵活地适应多种下游任务,显著地扩展了模型的应用范围。关键改进在于对模型进行了多任务无监督学习的训练,从而使它在面对不同的NL...
GPT1、GPT2和GPT3是OpenAI推出的基于Transformer架构的预训练语言模型,它们各自具有不同的特点和性能:GPT1: 核心特点:通过无监督预训练和有监督微调,能够处理多样化的NLP任务。 性能表现:在一些零样本任务中表现出强大的泛化能力,验证了预训练语言模型的有效性。 局限性:尽管性能出色,但仍有提升...
GPT1, BERT, GPT2 和 GPT3 模型概述 GPT1-3及BERT的模型概述(2020年5月之前LLMs主流模型) GPT-1(2018年6月)# 📎 Paper:Improving Language Understanding by Generative Pre-Training 🌟 Highlights# 在NLP领域,GPT-1 开始使用大量无标签文本数据进行预训练 (Pre-training),然后通过标签文本数据针对不同的...
GPT-2:GPT-2是GPT系列的第二个版本,发布于2019年。相比于GPT-1,GPT-2在模型规模和预训练数据上都有了显著的提升。GPT-2具有更大的模型规模,参数数量从GPT-1的1.17亿增加到了15亿,并使用了更多的预训练数据。这些改进使得GPT-2在生成任务上表现出了更强的创造力和语言理解能力,能够生成更长、更连贯的文本。
第一代GPT-1诞生于2018年6月,训练参数量为1.2亿个,数据库规模为5GB;仅时隔半年之后,第二代GPT-2诞生于2019年2月,训练参数量为15亿个,数据库规模为40GB;第三代GPT-3诞生于2020年5月,训练参数量飞跃至1750亿个,数据库规模达到45TB。可以看到,第三代模型较第二代的训练参数增长超过100倍,数据库规模则增长超...
GPT-1的训练分为两步:首先在大规模文本数据上学习高容量的语言模型,然后在标注数据上进行微调。这一过程基于无监督预训练和有监督微调,通过优化目标函数来提升模型性能。无监督预训练阶段,模型学习到通用的语言结构和规律,通过极大化似然函数,优化模型参数。有监督微调阶段,模型针对特定任务进行参数调整...
图2. BERT输入表示。输入嵌入是标记嵌入、分割嵌入和位置嵌入的总和。嵌入和位置嵌入的总和 接下来,MLM和 NSP是Bert的另外两个亮点: Bert中引入了一个带mask的语言模型训练(Masked LM)。为了训练深度双向的表示,随机mask一定百分比的输入token,然后去预测那些掩码处理掉的token。作者将这个过程称为是“masked LM”(...