在“合规性”上的提升,主要通过“训练数据调整”(dataset interventions)和“预训练”(pre-training)两...
GPT-4的推理权衡和架构 GPT-4有16个experts,每个token选两个进行推理。这意味着,batchsize为8的话,那么对每个expert来说,费老大劲load的expert的参数,其实只处理了batchsize为1的数据。这还是experts负载均衡的情况,更糟糕的是,可能一个expert处理了batchsize为8的数据,而其他expert可能是4、1或者0。 这也是为什...
# Training with a 4-GPU serverscolossalai run --nproc_per_node=4 train_sft.py \ --pretrain "/path/to/LLaMa-7B/" \ --model 'llama' \ --strategy colossalai_zero2 \ --log_interval 10 \ --save_path /path/to/Coati-7B \ --dataset /path/to/data.json \ -...
LLaVA is trained on 8 A100 GPUs with 80GB memory. To train on fewer GPUs, you can reduce theper_device_train_batch_sizeand increase thegradient_accumulation_stepsaccordingly. Always keep the global batch size the same:per_device_train_batch_sizexgradient_accumulation_stepsxnum_gpus. 4.1 超参...
GPT-4离正式发布已经过去四个多月,外界对于GPT-4模型架构、训练成本等信息一直非常好奇,奈何OpenAI嘴太严,丝毫不露风声,以至于马斯克多次斥责OpenAI不open。然而,世上没有不透风的墙。昨日,半导体分析机构SemiAnalysis 发布了一篇题为《GPT-4 Architecture, Infrastructure, Training Dataset, Costs,Vision, MoE...
("AZURE_OPENAI_ENDPOINT") openai.api_type = 'azure' openai.api_version = '2023-05-01' training_file_name = 'training_set.jsonl' validation_file_name = 'validation_set.jsonl' # Upload the training and validation dataset files to Azure OpenAI with the SDK. training_response = openai....
Creates a job that fine-tunes a specified model from a given dataset. Create image Creates an image given a prompt. Create image edit Creates an edited or extended image given an original image and a prompt. Create image variation Creates a variation of a given image. Create moderation Clas...
It is better to tune this parameter for each dataset separately, but "lazy" 0.5 is pretty good for most datasets. sampling_rate: int (default - 16000) Currently silero VAD models support 8000 and 16000 sample rates min_silence_duration_ms: int (default - 100 ...
这相当复杂;但由于它也相对通用,PyTorch 在DataLoader类中轻松提供了所有这些魔法。它的实例可以生成子进程,后台加载数据集中的数据,以便在训练循环可以使用时,数据已准备就绪。我们将在第七章中遇到并使用Dataset和DataLoader。 有了获取样本批次的机制,我们可以转向图 1.2 中心的训练循环本身。通常,训练循环被实现为...