完成数据预处理;其次通过VMD-LSTM方法实现健康因子的分解、预测和重构,并将重构得到的数据应用于RUL预测的GPR模型,完成预测模型搭建;最后以NASA锂电池数据集作为算法测试数据,结果表明,所提取的健康因子能够准确跟踪锂电池的退化过程;所提预测方法能够准确地估计电池的剩余寿命,同时具有较高的可靠性和稳定性。