In this work we propose the Transformer, a model architecture eschewing recurrence and instead relying entirely on an attention mechanism to draw global dependencies between input and output. The Transformer allows for significantly more parallelization and can reach a new state of the art in translati...
Google Research. Contribute to google-research/google-research development by creating an account on GitHub.
google Transformer的实现,A TensorFlow Implementation of the Transformer: Attention Is All You Need - GitHub - jrjdr/transformer: google Transformer的实现,A TensorFlow Implementation of the Transformer: Attention Is All You Need
在Vision Transformer以及其他注意力架构中,自注意力层同时执行i与ii;而MLP则孩子能够i。Mixer背后的思...
在NLP领域transformer已经是成功地取代了RNN(LSTM/GRU),在CV领域也出现了应用,比如目标检测和图像加注,还有RL领域。这是一篇谷歌2020年9月份在arXiv发表的综述论文 “Efficient Transformers: A Survey“,值得读读。 文章主要针对一类X-former模型,例如Reformer...
RecurrentGemma-2B 在下游任务上实现了卓越的性能,可与 Gemma-2B(transformer 架构)媲美。同时,RecurrentGemma-2B 在推理过程中实现了更高的吞吐量,尤其是在长序列上。视频编辑工具 ——Google Vids Google Vids 是一款 AI 视频创建工具,是 Google Workspace 中添加的新功能。谷歌表示,借助 Google Vids,用户...
根据Transformer 是如何工作的:600 行 Python 代码实现 self-attention 和两类 Transformer(2019), BERT 是首批 在各种自然语言任务上达到人类水平的transformer 模型之一。 预训练和 fine-tuning 代码:github.com/google-research/bert。 BERT 模型只有 0.1b ~ 0.3b 大小,因此在 CPU 上也能较流畅地跑起来。 译者...
The team evaluated their Block-Recurrent Transformer on three long documents: PG19, arXiv, and GitHub. They used the task of auto-regressive language modelling, where the goal is to predict the next token in a sequence. In the experiments, the Block-Recurrent Transformer...
https://github.com/google-research/bert/blob/master/multilingual.md 只要在这 100 种语言中,如果有 NER 数据,就可以很快地训练 NER。 BERT 原理简述 BERT 的创新点在于它将双向 Transformer 用于语言模型, 之前的模型是从左向右输入一个文本序列,或者将 left-to-right 和 right-to-left 的训练结合起来。
论文: https://arxiv.org/pdf/2106.11297.pdf Github: https://github.com/google-research/scenic/tree/main/scenic/projects/token_learner 参考: https://ai.googleblog.com/2021/12/improving-vision-transformer-efficiency.html