GNN循环调用 的目标是得到每个结点稳定的隐藏状态,所以只有在隐藏状态收敛后才能输出;而RNN的每个时间步上都可以输出,比如语言模型。 不过鉴于初代GNN与RNN结构上的相似性,一些文章中也喜欢把它称之为 Recurrent-based GNN,也有一些文章会把它归纳到 Recurrent-based GCN中。之后读者在了解 GCN后会理解为什么人们要如...
GNN循环调用的目标是得到每个结点稳定的隐藏状态,所以只有在隐藏状态收敛后才能输出;而RNN的每个时间步上都可以输出,比如语言模型。 不过鉴于初代GNN与RNN结构上的相似性,一些文章中也喜欢把它称之为 Recurrent-based GNN,也有一些文章会把它归纳到 Recurrent-based GCN中。之后读者在了解 GCN后会理解为什么人们要如此...
模型简介:论文提出Twin Weisfeiler-Lehman测试和基于其的Twin-GNN,通过同时传递节点标签和标识提升了GNN的表达能力,在图分类任务上优于基于消息传递的GNN。 2.ID-GNN 论文:Identity-aware Graph Neural Networks 身份识别图神经网络 模型简介:本文提出身份识别图神经网络ID-GNN,通过在消息传递中感知节点身份,提高了相对1...
SHADOW-GNN旨在解决大规模数据挑战和过度平滑问题。通过解耦节点接受区域与图神经网络深度,实现深层网络表达能力,同时避免过度平滑。它采用子图采样策略,形成不同子图,并在子图上应用任意深度的图神经网络模型。 总结:Cluster-GCN通过节点聚类提高利用率;RWT逐层扩张子图;GraphSAINT减小估计偏差与方差;SHADOW-GNN增强模型可拓...
PGL图学习之图神经网络GNN模型GCN、GAT[系列六] 项目链接:一键fork直接跑程序https://aistudio.baidu.com/aistudio/projectdetail/5054122?contributionType=1 0.前言-学术界业界论文发表情况 ICLR2023评审情况: ICLR2023的评审结果已经正式发布!今年的ICLR2023共计提交6300份初始摘要和4922份经过审查的提交,其中经过审查...
PGL图学习之图神经网络GNN模型GCN、GAT[系列六] 项目链接:一键fork直接跑程序 https://aistudio.baidu.com/aistudio/projectdetail/5054122?contributionType=1 0.前言-学术界业界论文发表情况 ICLR2023评审情况: ICLR2023的评审结果已经正式发布!今年的ICLR2023共计提交6300份初始摘要和4922份经过审查的提交,其中经过审...
PGL图学习之图神经网络GNN模型GCN、GAT[系列六] 项目链接:一键fork直接跑程序https://aistudio.baidu.com/aistudio/projectdetail/5054122?contributionType=1 0.前言-学术界业界论文发表情况 ICLR2023评审情况: ICLR2023的评审结果已经正式发布!今年的ICLR2023共计提交6300份初始摘要和4922份经过审查的提交,其中经过审查...
PGL图学习之图神经网络GNN模型GCN、GAT[系列六] Fork 17 喜欢 5 分享 本次项目讲解了图神经网络的原理并对GCN、GAT实现方式进行讲解,最后基于PGL实现了两个算法在数据集Cora、Pubmed、Citeseer的表现,在引文网络基准测试中达到了与论文同等水平的指标。
事实上,上面这个图与GNN中的信息流动并不完全等价。从笔者来看,如果我们用物理模型来描述它,上面这个图代表的是初始时有3个热源在散发热量,而后就让它们自由演化;但实际上,GNN在每个时间步都会将结点的特征作为输入来更新隐藏状态,这就好像是放置了若干个永远不灭的热源,热源之间会有互相干扰,但最终不会完全一致。