3. 循环神经网络(Recurrent Neural Network, RNN) · 结构:带循环连接,能处理序列数据(如时间序列、文本)。 · 用途:自然语言处理(NLP)、语音识别。 · 示例:LSTM、GRU。 4. 图神经网络(Graph Neural Network, GNN) · 结构:处理图结构数据(节点和边的关系)。 · 用途:社交网络分析、分子
假设在GNN中存在三个结点,,,相应地,在RNN中有一个序列。笔者认为,GNN与RNN的区别主要在于4点: GNN的基础理论是不动点理论,这就意味着GNN沿时间展开的长度是动态的,是根据收敛条件确定的,而RNN沿时间展开的长度就等于序列本身的长度。 GNN每次时间步的输入都是所有结点 的特征,而RNN每次时间步的输入是该时刻对应...
假设在GNN中存在三个结点x1,x2,x3,相应地,在RNN中有一个序列(x1,x2,x3)。 笔者认为,GNN与RNN的区别主要在于4点: 不过鉴于初代GNN与RNN结构上的相似性,一些文章中也喜欢把它称之为 Recurrent-based GNN,也有一些文章会把它归纳到 Recurrent-based GCN中。 GNN的局限 初代GNN,也就是基于循环结构的图神经网...
图神经网络 [1] GNN 算是继 FNN、CNN、RNN 类(vanilla RNA、LSTM、GRU)之后的又一类神经网络结构,相比较已有模型能够处理欧几里得数据(点、向量和矩阵),GCN 则能更好处理非欧几里得数据(增加关系)。 可以仿照 RN…
循环神经网络(RNN)用于建模序列信息,如文本、用户历史记录和音视频。长短期记忆网络(LSTM)和门控循环单元(GRU)是RNN的两种常见形式。GGNN模型基于GRU,针对输出状态序列的任务,而GCN和GAT模型以静态图为输入。GGNN以时间演化图为输入,通过遗忘门和更新门等结构捕捉图结构演化特征。
在本系列教程中,将带你从了解深度学习和神经网络基础到构建神经网络模型,再到实战应用,涵盖了卷积神经网络(CNN)、循环神经网络(RNN)、图神经网络(GNN)、长短期记忆网络(LSTM)、生成对抗网络(GAN)、变分自编码器(VAE)、以及Transtomer模型等。通过理论讲解与实例演示相结合,你将掌握深度学习的基本原理、应用场景和...
在本系列教程中,将带你从了解深度学习和神经网络基础到构建神经网络模型,再到实战应用,涵盖了卷积神经网络(CNN)、循环神经网络(RNN)、图神经网络(GNN)、长短期记忆网络(LSTM)、生成对抗网络(GAN)、变分自编码器(VAE)、以及Transtomer模型等。通过理论讲解与实例演示相结合,你将掌握深度学习的基本原理、应用场景和...
CNN、RNN、GNN这么多的神经网络有什么区别和联系? 先聊聊什么是神经网络吧 我们的目标是打造人工智能,拥有智慧的大脑无疑是最好的模仿对象。人脑中约有860亿个神经元,这被认为是我们能够思考的原因。神经元有一个细胞体和很多突触组成,能处理电信号,并将它们传递到该去的地方,仿照人脑神经元和工作原理,人们构建了...
但是,经典的深度学习网络(ANN,CNN,RNN)却难以处理这些非欧数据,于是,图神经网络(GNN)应运而生,GNN以图作为输入,输出各种下游任务的预测结果。 下游任务包括但不限于: 节点分类:预测某一节点的类型 边预测:预测两个节点之间是否存在边 社区预测:识别密集连接的节点所形成的...
深度学习模型的统一表示:CNN, RNN, GNN 和 Transformer RPN 实现了丰富的功能函数,具体列表如上图所示。通过组合使用上述功能函数,RPN 2 不仅可以构建功能强大的模型结构,并且可以统一现有基础模型的表示,包括 CNN,RNN,GNN 和 Transformer 模型。 实验验证 ...