在算法收敛加速的过程中,我们来看一下它的收敛过程,如下表4-1:表4-1收敛过程数据表Table4-1Tableofconvergenceprocessdata迭代次数绝对残差残量收敛速度10.7992770.55500920.4436060.64952230.2881320.66342040.1911530.66603050.1273130.66654160.0848600.66664270.0565710.66666280.0377140.66666690.0251420.666666100.0167620.666667110.0111740...
3.VanderVorst,H.A.andVuik.C..Thesupedinearconvergenceof GMR.ES.J.Comput.^pp1.Math.,1993.48:327—34 4 钟宝江.一种更活的混合GMR/~S 算法.高校计算教学.2001, 23:261—272 5.Zhong.B.J..OnthebreakdowmoftheGalerkinandleast—squares.
How does GMRES convergence change when the, coefficient matrix is perturbed? Using spectral perturbation theory and?resolvent estimates, we develop simple, general bounds that quantify the lag in convergence such, a perturbation can induce. This analysis is particularly relevant to preconditioned systems...
GMRES算法在迭代过程中通常表现出一种加速收敛行为,随着迭代次数的增加,这种加速收敛现象越明显,即残量收敛会随着迭代步数的增加而逐渐得到改善。在CG方法中,这种加速收敛与Ritz值有密切关系。通过分析,我们发现GMRES的加速收敛与其斜投影过程中产生的Ritz值对特征值的逼近程度有关系。在实际应用中,为了减少存储量和...
zhi- hao Cao.A note On the convergence behavior of GMRES[-J] .Applied Numerical Mathemat— ics ,19 97 ,2 5 ( 1 ) :13- 20 . 吴 果林 ,王晟 .误差向量与 Krylov 子空间对 GMRES ( m) 算 法收 敛速度的影响 [ J ] .广 西科 学, 20 11 ,1 8( 3 ) :214- 2 19. W.E.A ...
68. % check for convergence 69. L = sum(log(Px*pPi')); 70. if L-Lprev < threshold 71. break; 72. end 73. Lprev = L; 74. end 75. 76. if nargout == 1 77. varargout = {Px}; 78. else 79. model = []; 80. model.Miu = pMiu; ...
GMRES Iterative Solver This linear system solver uses the restarted GMRES (generalized minimum residual) method (seeRef. 9andRef. 10). This is an iterative method for general linear systems of the formAx=b. For fast convergence it is important to use an appropriatepreconditioner. ...
GMRES_matlab gmres Generalized minimum residual method (with restarts)expand all in page Syntax x = gmres(A,b)gmres(A,b,restart)gmres(A,b,restart,tol)gmres(A,b,restart,tol,maxit)gmres(A,b,restart,tol,maxit,M)gmres(A,b,restart,tol,maxit,M1,M2)gmres(A,b,restart,tol,maxit,M1,M2,...
求非对称线性方程组的GMRES和共轭残量法_
s method here comes through our more general software framework. Nitsche’s method captures problems on evolving domains solved on fixed computational background grids (cf. [5]). We note that Nitsche’s method does not perturb the convergence behavior of the space-time discretization; cf. Sect....