1 HMM可以用5个元素来描述 2 HMM的三个主要问题 3 GMM-HMM模型的超参(列出主要的,可能需要通过交叉验证,或建模迭代来优化) 三、GMM-HMM语音识别模型的类型 1 根据训练集是否提供“人工标注的状态序列”,学习算法分为有监督学习和无监督学习。 2 根据语音单位不同,状态集合元素分为音素或子音素。关于音素:英语...
在语音识别应用中由于HMM是从左到右的模型,第一个必然是状态一,即P(q0=1)=1。所以没有pi这个参数了。 注释: 没有考虑HMM中所有可能的路径来计算每个帧处每个弧的后验计数,而是使用维特比解码来找到HMM中的单个最可能路径。 步骤一:传入数据 输入:初始GMM参数、Viterbi解码的最优状态序列、音频数据、迭代...
在HMM框架下,我们假设状态序列是一个马尔可夫过程。为了推导出HMM,我简单地用带有发射模型的马尔可夫链来指定生成观察概率。或者我们可以把它看作是一个混合模型,其中的状态不再是独立产生的,而是一个马尔可夫过程。 图(左)显示了一个跨时间的HMM的结构。图(右)HMM用马尔可夫链的状态转移框架描述天气。在该图中,...
在智能家居领域,基于GMM的语音识别技术可以用于智能音箱、智能电视等设备的语音控制;在车载领域,可以用于车载娱乐、车载导航等系统的语音控制;在医疗领域,可以用于语音病历、智能问诊等系统,提高医疗服务的效率和质量。 三、HMM与GMM的结合使用 在实际应用中,HMM和GMM通常结合使用,形成一个完整的语音识别系统。HMM用于建...
基于孤立词的GMM-HMM语音识别系统 语音识别中GMM是一个对角的GMM,它的协方差为对角阵,这是因为在GMM-HMM语音识别中,一般使用MFCC特征,而MFCC特征各维特征是独立的,只需要对角阵就可以描述它,此外,对角GMM模型的参数量相对较少,所需的计算量也更少。
训练解码基于单音素的GMM-HMM语音识别系统音素/词典训练解码基于三音素的GMM-HMM语音识别系统三音素决策树 基于孤立词的GMM-HMM语音识别系统语音识别中GMM是一个对角的GMM,它的协方差为对角阵,这是因为在GMM-HMM语音识别中,一般使用MFCC特征,而MFCC特征各维特征是独立的,只需要对角阵就可以描述它,此外,对角GMM模型...
从零搭建——基于HMM-GMM的语音识别模型构建 HMM-GMM(Hidden Markov Model - Gaussian Mixture Model)是语音识别中的经典模型之一。它结合了隐马尔可夫模型(HMM)和高斯混合模型(GMM)的优点,用于建模语音信号的时间序列特性和观测值的概率分布。 原理 隐马尔可夫模型(HMM) 隐马尔可夫模型(HMM, Hidden Markov Model)是...
3. GMM+HMM大法解决语音识别 <!--识别--> 我们获得observation是语音waveform, 以下是一个词识别全过程: 1). 将waveform切成等长frames,对每个frame提取特征(e.g. MFCC), 2).对每个frame的特征跑GMM,得到每个frame(o_i)属于每个状态的概率b_state(o_i) ...
1. GMM-HMM模型搭建 系统识别连续数字0-9的英文语音,采用单音素结构,未涉及更复杂的三音子训练和决策树内容。模型训练主要采用EM算法。2. Viterbi解码过程 在解码过程中,采用Viterbi算法识别输入语音,提取特征(68帧,12维MFCC)。利用预先训练好的HMM模型对由孤立数字组成的数据进行解码,目的是找出...
3. GMM+HMM大法解决语音识别 我们获得observation是语音waveform, 以下是一个词识别全过程: 1)将waveform切成等长frames,对每个frame提取特征(e.g. MFCC), 2)对每个frame的特征跑GMM,得到每个frame(o_i)属于每个状态的概率b_state(o_i) fig6. complete process from speech frames to a state sequence ...