更长的上下文:基于 FlashAttention 技术,项目团队将基座模型的上下文长度(Context Length)由 ChatGLM-6B 的 2K 扩展到了 32K,并在对话阶段使用 8K 的上下文长度训练,允许更多轮次的对话。但当前版本的 ChatGLM2-6B 对单轮超长文档的理解能力有限,我们会在后续迭代升级中着重进行优化。 更高效的推理:基于 Multi-Que...
- 支持8K-32k的上下文 - 推理性能提升了42% - 对学术研究完全开放,允许申请商用授权 值得一提的是,在中文C-Eval榜单中,ChatGLM2以71.1分位居榜首,碾压GPT-4。而最新版本ChatGLM2-6B以51.7分位列第6。ChatGLM2-6B升级亮点 ChatGLM-6B的第二代版本,在保留了初代模型对话流畅、部署门槛较低等众多优秀...
ChatGLM2-6B虽然可以支持32k,但是在对话阶段使用 的8K 的上下文长度训练,因此其多轮对话能力大大增强了,但是对单轮超长文档的理解能力依然有限。整体测试下来确实比大部分开源模型的体感要强,尤其是在长文本问答和总结方面,优势明显。但是 ,本次ChatGLM2-6B长上下文的先发优势可能也无法维持太久,因为最新在上下...
性能升级ChatGLM2-6B 是开源中英双语对话模型 ChatGLM-6B 的第二代版本,在保留了初代模型对话流畅、部署门槛较低等众多优秀特性的基础之上,ChatGLM2-6B 引入了如下新特性:更强大的性能:基于 ChatGLM 初代模型的开发经验,我们全面升级了 ChatGLM2-6B 的基座模型。ChatGLM2-6B 使用了 GLM 的混合目标函数,经过了 ...
更高效的推理:基于 Multi-Query Attention 技术,ChatGLM2-6B 有更高效的推理速度和更低的显存占用:在官方的模型实现下,推理速度相比初代提升了 42%,INT4 量化下,6G 显存支持的对话长度由 1K 提升到了 8K。 更开放的协议:ChatGLM2-6B 权重对学术研究完全开放,在获得官方的书面许可后,亦允许商业使用。
更高效的推理:基于 Multi-Query Attention 技术,ChatGLM2-6B 有更高效的推理速度和更低的显存占用:在官方的模型实现下,推理速度相比初代提升了 42%,INT4 量化下,6G 显存支持的对话长度由 1K 提升到了 8K。 更开放的协议:ChatGLM2-6B 权重对学术研究完全开放,在获得官方的书面许可后,亦允许商业使用。如果您发...
在主要评估LLM模型中文能力的 C-Eval 榜单中,截至6月25日 ChatGLM2 模型以 71.1 的分数位居 Rank 0 ,ChatGLM2-6B 模型以 51.7 的分数位居 Rank 6,是榜单上排名最高的开源模型。 * CEval榜单,ChatGLM2暂时位居Rank 0,ChatGLM2-6B位居 Rank 6 性能升级 ChatGLM2-6B 是开源中英双语对话模型 ChatGLM-...
ChatGLM2-6B-32K是在ChatGLM2-6B的基础上进一步强化了对于长文本的理解能力,能够更好的处理最多32K长度的上下文。本文介绍了相关API。 功能介绍 调用本接口,发起一次对话请求。 在线调试 平台提供了 API在线调试平台-示例代码 ,用于帮助开发者调试接口,平台集成快速检索、查看开发文档、查看在线调用的请求内容和返回结...
ChatGLM2-6B虽然可以支持32k,但是在对话阶段使用 的8K 的上下文长度训练,因此其多轮对话能力大大增强了,但是对单轮超长文档的理解能力依然有限。整体测试下来确实比大部分开源模型的体感要强,尤其是在长文本问答和总结方面,优势明显。 但是,本次ChatGLM2-6B长上下文的先发优势可能也无法维持太久,因为最新在上下文领域...
更长的上下文:基于 FlashAttention 技术,我们将基座模型的上下文长度(Context Length)由 ChatGLM-6B 的 2K 扩展到了 32K,并在对话阶段使用 8K 的上下文长度训练,允许更多轮次的对话。但当前版本的 ChatGLM2-6B 对单轮超长文档的理解能力有限,我们会在后续迭代升级中着重进行优化。更高效的推理:基于 Multi-Query ...