R negative.binomial 负二项式 GLM 的族函数R语言 negative.binomial 位于MASS 包(package)。 说明 使用glm() 指定使用已知 theta 参数拟合负二项式广义线性模型所需的信息。 用法 negative.binomial(theta = stop("'theta' must be specified"), link = "log") 参数 theta 附加参数 theta 的已知值。 link...
NBSTRAT: Stata module to estimate Negative Binomial with Endogenous Stratification nbstrat fits a maximum-likelihood negative binomial with endogenous stratification regression model of depvar on indepvars, where depvar is a nonnegative c... J Hilbe,R Martinez-Espineira - Roberto Martinez-Espineira ...
codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘’ 1 (Dispersion parameter for Negative Binomial(2055606) family taken to be 1) Null deviance: 15127 on 251 degrees of freedom Residual deviance: 14799 on 245 degrees of freedom AIC: 16542 Number of Fisher Scoring iterations: ...
GLM negative binomial model using source, style and theme variables predicting number of per-tweet retweets during the Boston Marathon Bombing.Jeannette SuttonC. Ben GibsonEmma S. SpiroCedar LeagueSean M. FitzhughCarter T. Butts
r !cauchy(0, 1); beta !pareto(1, 1.5); # vectorize the overdispersion for(nin1:N) { rv[n] < - square(r + 1) - 1; } # regression mu < - x * (beta - 1) + 0.001; y !neg_binomial(mu ./ rv, 1 / rv[1]);
bwlewis/GLMPublic Notifications Fork17 Star110 Code Issues4 Pull requests Actions Projects Wiki Security Insights Additional navigation options Latest commit Cannot retrieve latest commit at this time. History History
In this chapter, we discuss regression type models when the dependent variable is categorical, in the sense that it can assume a limited number of values. Dummy variables are known to take only a limited number of values (0, 1, 1, etc.). Binary variables are a special kind of dummy va...
模型效果越好,则ROC曲线越远离对角线,极端的情形是ROC曲线经过(0,1)点,即将正例全部预测为正例而将负例全部预测为负例。...=data[order(data$prob),] n=nrow(data) tpr=fpr=rep(0,n) 根据不同的临界值threshold来计算TPR和FPR,之后绘制成图 for (i in 1...order(data1$prob),] n=nrow(data1) ...
GSW-FI has been compared to ten other commonly used methods for identifying cancer-associated genes in 31 TCGA datasets. These methods include Dendrix[49], DriverNet[13], e-Driver[16], iPAC, MEMo[50], MSEA, MutSigCV, DriverML [37], OncodriveFML [19], and rDriver [20]. The driver ...
discrete.NegativeBinomial 在StatsModels或Scipy优化器中使用Newton方法(默认)。主要问题是,当我们离最佳距离很远时,指数平均功能可以轻松导致大量渐变和Hessian的溢出问题。 FIT方法有一些尝试以获得良好的起始值,但这并不总是有效的。 我通常会尝试的一些可能性 检查没有回归器是否具有较大的值,例如恢复最大低于10的最...