Given positive integers r>1,n> 2, n being even and the coefficient of (3r)th term and (r+ 2)th term in the expansion of (1 +x)^(2n) are equal; find r
Given positive integers r > 1, n > 2 and the coefficients of (3r)th and (r+2)th terms in the Binomial expansion of (1+x)2n are equal, then: View Solution Q2 Given the integers r > 1, n > 2, and coefficient of (3r)th and (r + 2)nd terms in the binomial expansion of...
11A25 11A41 Keywords Ordinary integers Extraordinary integers Square-free integers Divisors 1. Introduction For any positive integer n, let n=q1⋯qs be the prime factorization of n with q1≥⋯≥qs>1. A positive integer n is said to be ordinary if the smallest positive integer with exactly...
It provides several problems and solutions that show the function of positive consecutive integers using various formulas. It also suggests the need for mathematics students to establish a general method for finding the sums to explore the subject more deeply.Gillotte...
athe sum of the first n positive integers is given by sum(n):if n=0 then return(0) else return (n+sum(n-1)) 总和测量第一个n正面整数的总和(n) :如果n=0然后回归(0)回归(n+sum (n-1))[translate]
Givena,b,care positive integers,anda,bare prime numbers, ,then the value of is( ) A.14 B.13 C.12 D. 11 (英汉词典 positive integers:正整数. prime numbers:质数)_ 试题答案 在线课程 D 练习册系列答案 全能练考卷系列答案 随堂优化训练系列答案 ...
结果1 题目 英语翻译Given a list of integers (A1,A2,...,An),and a positive integer M,please find the number of positive integers that are not greater than M and dividable by any integer from the given list. 相关知识点: 试题来源: 解析 已知一系列整数(A1,A2,...An)和一个正整...
所以n+2不可能是1,即m+3不可能是2025. 所以m的可能值只有12个.结果一 题目 Given that m and n are positive integers, and mn+2m+3n=2019. Find the number of possible values of m.已知m和n为正整数,而且mn+2m+3n=2019,求m的可能值的数目. 答案 12.相关...
Remark 1 Problem A-DSCR is NP-hard given an oracle representation of function f. Proof We show that a decision version of problem A-DSCR is NP-hard by a transformation from the NP-complete problem Partition [7]: given positive integers e1,…,ek, is there a 0–1 vector z=(z1,…,zk...
相关知识点: 试题来源: 解析 (1) 168. (2) 1344. (1) 17=4+6+7, so the largest possible product is 4×6×7=168. (2) 25=4+6+7+8, so the largest possible product is 4×6×7×8=1344.反馈 收藏