PyTorch image models, scripts, pretrained weights -- ResNet, ResNeXT, EfficientNet, EfficientNetV2, NFNet, Vision Transformer, MixNet, MobileNet-V3/V2, RegNet, DPN, CSPNet, and more huggingface.co/docs/timm R
PyTorch Image Models (timm) is a collection of image models, layers, utilities, optimizers, schedulers, data-loaders / augmentations, and reference training / validation scripts that aim to pull together a wide variety of SOTA models with ability to reproduce ImageNet training results. The work...
Github项⽬rwightman/pytorch-image-models整合了PyTorch的许多图像模型、脚本和预训练参 数。项⽬中的模型主要有下⾯三个来源:Torchvision https://github.com/pytorch/vision/tree/master/torchvision/models Cadene's Pretrained Models https://github.com/Cadene/pretrained-models.pytorch 作者⾃⼰提供:http...
2. PyTorch Image Models 这份代码目前有 600+ 星,并且最近几天也有更新,实现的网络更多,包括 DPN、Xception、InceptionResNetV2,以及最近比较火的 EfficientNet。 ) 这个项目有以下几个特点: 对所有的模型都做了封装,也就是都有默认的配置接口和 API,包括统一的调用分类器接口get_classifier、reset_classifier,对特...
作者同样给出训练的实验结果,然后还有使用方法,同样也是在指定位置准备好数据,就可以使用了。 另外,作者还给出 ToDo 列表,会继续完善该项目。 链接: https:///rwightman/pytorch-image-models 最后,祝大家端午安康! 欢迎关注我的微信公众号--算法猿的成长,或者扫描下方的二维码,大家一起交流,学习和进步!
import torchfrom torchvision.models import resnet50from vit_pytorch.distill import DistillableViT, DistillWrapperteacher = resnet50(pretrained = True)v = DistillableViT( image_size = 256, patch_size = 32, num_classes = 1000, dim = 1024, depth = 6, heads = 8, mlp_...
项目地址:https://github.com/pytorch/text 2.pytorch-seq2seq:在 PyTorch 中实现序列到序列(seq2seq)模型的框架。项目地址:https://github.com/IBM/pytorch-seq2seq 3.anuvada:PyTorch 中实现的 NLP 的可解释模型。项目地址:https://github.com/Sandeep42/anuvada 4.audio:PyTorch 的简单音频 I/O。...
models import resnet50from vit_pytorch.distill import DistillableViT, DistillWrapper teacher = resnet50(pretrained = True) v = DistillableViT( image_size = 256, patch_size = 32, num_classes = 1000, dim = 1024, depth = 6, heads = 8, mlp_dim = 2048, dropout = 0.1, emb_dropout =...
该目录中的实现和预训练权重均基于这个 GitHub 库(https://github.com/moabitcoin/ig65m-pytorch),并添加了一些功能,以使自定义模型的训练和评估更加用户友好。这里在预训练时使用的是 IG-Kinetics 数据集。 7. 多目标跟踪 该目录提供了构建和推断多目标跟踪系统的示例和最佳实践,旨在使用户能够基于自定义数据集...
import torchfrom torchvision.models import resnet50from vit_pytorch.distill import DistillableViT, DistillWrapperteacher = resnet50(pretrained = True) v = DistillableViT( image_size = 256, patch_size = 32, num_classes = 1000, dim = 1024, ...