本文解读我们ICLR2022上发表的论文《GiraffeDet: A Heavy-Neck Paradigm for Object Detection》。我们提出了一个新的目标检测网络结构范式:GiraffeDet,它具有极轻量级计算量的backbone和大计算量的neck,使得网络更关注于高分辨率特征图中空间信息和低分辨率特征图中语义信息的信息交互。同时这个设计范式允许检测网络在网络...
相比ResNeXt方案,GiraffeDet具有更高的性能,这意味着:好的FPN设计比骨干更重要; 相比其他方案,所提GiraffeDet同样SOTA性能,进一步证实:所提方案具有更高精度、更高效率; 搭配多尺度测试时,所提GiraffeDet取得了54.1%mAP,小尺度AP提升2.8%,大尺度AP提升2.3%,均高于中尺度的1.9%提升。 从上图可以看到:所提GiraffeDet...
在今天分享中,研究者表明这种范式确实导致了次优的目标检测模型。为此,研究者们提出了一种新的Heavy Neck范式GiraffeDet,这是一种用于高效目标检测的类似长颈鹿的网络。GiraffeDet使用极其轻量级的主干和非常深且大的neck部模块,它鼓励不同空间尺度之间的密集信息交换以及同时不同级别的潜在语义。 这种设计范式允许检测器...
为此,我们提出了一个新的重颈范式,GiraffeDet,一个类似长颈鹿的网络,用于有效的目标检测。GiraffeDet使用了一个非常轻量的主干和一个非常深而大的颈部模块,这鼓励了不同空间尺度之间密集的信息交换,同时也鼓励了不同层次的潜在语义。这种设计范式使检测器即使在网络的早期阶段,也能以同样的优先级处理高级语义信息和低...
本文是阿里巴巴在目标检测领域的工作(已被ICLR2022接收),提出了一种新颖的类“长颈鹿”的GiraffeDet架构,它采用了轻骨干、重Neck的架构设计范式。所提GiraffeDet在COCO数据集上取得了比常规CNN骨干更优异的性能,取得了54.1%mAP指标,具有更优异的处理目标大尺度变化问题的能力。
GiraffeDet包含轻量space-to-depth chain、Generalized-FPN以及预测网络,延续了一阶段检测设计范式, 可以更高效、更充分的多尺度信息交换。 2-1 Space-to-Depth Chain (S2D Chain) S2D 操作如下,S2D将更多的空域信息移动到深度维度,同时可以起到无参下采样作用。
2 yolov8引入GiraffeDet 为了提高yolov8对小目标的检测效果,可以在yolov8中引入GiraffeDet网络,在大部分数据集中可以有不错的效果。引入方法如下。 2.1 加入GiraffeDet模型 在ultralytics/nn/modules/中创建module_GiraffeDet.py,并把下面代码写入 import torch ...
GFPN 是 GiraffeDet 中的一个关键组件,其设计旨在高效地融合多尺度特征,以提升目标检测性能。GFPN 结合了跳跃层连接(skip-layer connections)和跨尺度连接(cross-scale connections)等创新技术,解决了传统特征金字塔网络(FPN)设计中的局限性,增强了不同特征层次之间的信息交换。
经典搭积木
GFPN 是 GiraffeDet 中的一个关键组件,其设计旨在高效地融合多尺度特征,以提升目标检测性能。GFPN 结合了跳跃层连接(skip-layer connections)和跨尺度连接(cross-scale connections)等创新技术,解决了传统特征金字塔网络(FPN)设计中的局限性,增强了不同特征层次之间的信息交换。