经验回放(Experience Replay,ER)是深度强化学习(Deep Reinforcement Learning,DRL)的重要组成部分,通过重复采样学习保留在经验池中的经验,优化目标策略.目前,经验回放存在两个问题:1)经验保留使用全保留或先进先出的经验池,需要与环境交互产生大量样本,导致深度强化学习算法的学习速度较慢,样本利用率有待提升;2)优先采样...